• Baker, J. M., and T. J. Griffis, 2005: Examining strategies to improve the carbon balance of corn/soybean agriculture using eddy covariance and mass balance techniques. Agric. For. Meteor., 128 , 163177.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., and A. A. M. Holtslag, 1991: Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor., 30 , 327341.

    • Search Google Scholar
    • Export Citation
  • Blümel, K., 1999: A simple formula for estimation of the roughness length for heat transfer over partly vegetated surfaces. J. Appl. Meteor., 38 , 814829.

    • Search Google Scholar
    • Export Citation
  • Brutsaert, W. H., 1982: Evaporation Into the Atmosphere: Theory, History, and Applications. D. Reidel, 299 pp.

  • Chen, F., Z. Janjic, and K. Mitchell, 1997: Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP Mesoscale Eta Model. Bound.-Layer Meteor., 85 , 391421.

    • Search Google Scholar
    • Export Citation
  • Choi, T., and Coauthors, 2004: Turbulent exchange of heat, water vapor, and momentum over a Tibetan prairie by eddy covariance and flux variance measurements. J. Geophys. Res., 109 .D21106, doi:10.1029/2004JD004767.

    • Search Google Scholar
    • Export Citation
  • Dyer, A. J., 1974: A review of flux-profile relationships. Bound.-Layer Meteor., 7 , 363372.

  • Garratt, J. R., and R. J. Francey, 1978: Bulk characteristics of heat transfer in the unstable, baroclinic atmospheric boundary layer. Bound.-Layer Meteor., 15 , 399421.

    • Search Google Scholar
    • Export Citation
  • Högström, U., 1996: Review of some basic characteristics of the atmospheric surface layer. Bound.-Layer Meteor., 78 , 215246.

  • Hong, J., T. Choi, H. Ishikawa, and J. Kim, 2004: Turbulence structures in the near-neutral surface layer on the Tibetan Plateau. Geophys. Res. Lett., 31 .L15106, doi:10.1029/2004GL019935.

    • Search Google Scholar
    • Export Citation
  • Kanda, M., M. Kanega, T. Kawai, R. Moriwaki, and H. Sugawara, 2007: Roughness lengths for momentum and heat derived from outdoor urban scale models. J. Appl. Meteor. Climatol., 46 , 10671079.

    • Search Google Scholar
    • Export Citation
  • Kohsiek, W., H. A. R. de Bruin, H. The, and B. van den Hurk, 1993: Estimation of the sensible heat flux of a semi-arid area using surface radiative temperature measurements. Bound.-Layer Meteor., 63 , 213230.

    • Search Google Scholar
    • Export Citation
  • Koike, T., 2004: The Coordinated Enhanced Observing Period—An initial step for integrated global water cycle observation. WMO Bull., 53 , 18.

    • Search Google Scholar
    • Export Citation
  • Koike, T., T. Yasunari, J. Wang, and T. Yao, 1999: GAME–Tibet IOP summary report. Proc. First Int. Workshop on GAME–Tibet, Xi’an, China, Chinese Academy of Sciences and Japanese National Committee for GAME, 1–2.

    • Search Google Scholar
    • Export Citation
  • Kondo, J., 1975: Air-sea bulk transfer coefficients in diabatic conditions. Bound.-Layer Meteor., 9 , 91112.

  • Kustas, W. P., B. J. Choudhury, M. S. Moran, R. J. Reginato, R. D. Jackson, L. W. Gay, and H. L. Weaver, 1989: Determination of sensible heat flux over sparse canopy using thermal infrared data. Agric. For. Meteor., 44 , 197216.

    • Search Google Scholar
    • Export Citation
  • Liu, H-Z., G. Tu, W-J. Dong, C-B. Fu, and L-Q. Shi, 2006: Seasonal and diurnal variations of the exchange of water vapor and CO2 between the land surface and atmosphere in the semi-arid area (in Chinese). Chin. J. Atmos. Sci., 30 , 108118.

    • Search Google Scholar
    • Export Citation
  • Liu, S., L. Lu, D. Mao, and L. Jia, 2007: Evaluating parameterizations of aerodynamic resistance to heat transfer using field measurements. Hydrol. Earth Syst. Sci., 11 , 769783.

    • Search Google Scholar
    • Export Citation
  • Ma, Y., O. Tsukamoto, J. Wang, H. Ishikawa, and I. Tamagawa, 2002: Analysis of aerodynamic and thermodynamic parameters on the grassy marshland surface of Tibetan Plateau. Prog. Nat. Sci., 12 , 3640.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1996: The bulk aerodynamic formulation over heterogeneous surfaces. Bound.-Layer Meteor., 78 , 87119.

  • Mahrt, L., and D. Vickers, 2004: Bulk formulation of the surface heat flux. Bound.-Layer Meteor., 110 , 357379.

  • McNaughton, K. G., 2004: Turbulence structure of the unstable atmospheric surface layer and transition to the outer layer. Bound.-Layer Meteor., 112 , 199221.

    • Search Google Scholar
    • Export Citation
  • Owen, P. R., and W. R. Thomson, 1963: Heat transfer across rough surfaces. J. Fluid Mech., 15 , 321334.

  • Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9 , 857861.

    • Search Google Scholar
    • Export Citation
  • Roth, M., 1993: Turbulent transfer relationships over an urban surface. II: Integral statistics. Quart. J. Roy. Meteor. Soc., 119 , 11051120.

    • Search Google Scholar
    • Export Citation
  • Sheppard, P. A., 1958: Transfer across the earth’s surface and through the air above. Quart. J. Roy. Meteor. Soc., 84 , 205224.

  • Stewart, J. B., W. P. Kustas, K. S. Humes, W. D. Nichols, M. S. Moran, and H. A. R. de Bruin, 1994: Sensible heat flux-radiometric surface temperature relationship for eight semiarid areas. J. Appl. Meteor., 33 , 11101117.

    • Search Google Scholar
    • Export Citation
  • Su, Z., T. Schmugge, W. P. Kustas, and W. J. Massman, 2001: An evaluation of two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere. J. Appl. Meteor., 40 , 19331951.

    • Search Google Scholar
    • Export Citation
  • Sugita, M., and A. Kubota, 1994: Radiometrically determined skin temperature and scalar roughness to estimate surface heat flux. Part II: Performance of parameterized scalar roughness for the determination of sensible heat. Bound.-Layer Meteor., 70 , 112.

    • Search Google Scholar
    • Export Citation
  • Sun, J., 1999: Diurnal variations of thermal roughness height over a grassland. Bound.-Layer Meteor., 92 , 407427.

  • Tamagawa, I., 1996: Turbulent characteristics and bulk transfer coefficients over the desert in the HEIFE area. Bound.-Layer Meteor., 77 , 120.

    • Search Google Scholar
    • Export Citation
  • Tanaka, K., H. Ishikawa, T. Hayashi, I. Tamagawa, and Y. Ma, 2001: Surface energy budget at Amdo on the Tibetan Plateau using GAME/Tibet IOP98 data. J. Meteor. Soc. Japan, 79 , 505517.

    • Search Google Scholar
    • Export Citation
  • Thom, A. S., 1972: Momentum, mass and heat exchange of vegetation. Quart. J. Roy. Meteor. Soc., 98 , 124134.

  • Twine, T. E., and Coauthors, 2000: Correcting eddy-covariance flux underestimates over a grassland. Agric. For. Meteor., 103 , 279300.

    • Search Google Scholar
    • Export Citation
  • Verhoef, A., H. A. R. de Bruin, and B. J. J. M. van den Hurk, 1997: Some practical notes on the parameter kB-1 for sparse vegetation. J. Appl. Meteor., 36 , 560572.

    • Search Google Scholar
    • Export Citation
  • Voogt, J. A., and C. S. B. Grimmond, 2000: Modeling surface sensible heat flux using surface radiative temperatures in a simple urban area. J. Appl. Meteor., 39 , 16791699.

    • Search Google Scholar
    • Export Citation
  • Wang, J., and Y. Mitsuta, 1991: Turbulence structure and transfer characteristics in the surface layer of the HEIFE Gobi area. J. Meteor. Soc. Japan, 69 , 587593.

    • Search Google Scholar
    • Export Citation
  • Wieringa, J., 1993: Representative roughness parameters for homogeneous terrain. Bound.-Layer Meteor., 63 , 323363.

  • Wilson, K. A., and Coauthors, 2002: Energy balance closure at FLUXNET sites. Agric. For. Meteor., 113 , 223243.

  • Yang, K., N. Tamai, and T. Koike, 2001: Analytical solution of surface layer similarity equations. J. Appl. Meteor., 40 , 16471653.

  • Yang, K., T. Koike, H. Fujii, K. Tamagawa, and N. Hirose, 2002: Improvement of surface flux parameterizations with a turbulence-related length. Quart. J. Roy. Meteor. Soc., 128 , 20732087.

    • Search Google Scholar
    • Export Citation
  • Yang, K., T. Koike, and D. Yang, 2003: Surface flux parameterization in the Tibetan Plateau. Bound.-Layer Meteor., 106 , 245262.

  • Yang, K., and Coauthors, 2007a: Initial CEOP-based review of the prediction skill of operational general circulation models and land surface models. J. Meteor. Soc. Japan, 85 , 99116.

    • Search Google Scholar
    • Export Citation
  • Yang, K., T. Watanabe, T. Koike, X. Li, H. Fujii, K. Tamagawa, Y. Ma, and H. Ishikawa, 2007b: Auto-calibration system developed to assimilate AMSR-E data into a land surface model for estimating soil moisture and the surface energy budget. J. Meteor. Soc. Japan, 85 , 229242.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., and R. E. Dickinson, 1998: Effect of surface sublayer on surface skin temperature and fluxes. J. Climate, 11 , 537550.

  • Zeng, X., R. E. Dickinson, M. Barlage, Y. Dai, G. Wang, and K. Oleson, 2005: Treatment of undercanopy turbulence in land models. J. Climate, 18 , 50865094.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., 1995: Non-local turbulent transport: Pollution dispersion aspects of coherent structure of convective flows. Air Pollution Theory and Simulation, H. Power, N. Moussiopoulos, and C. A. Brebbia, Eds., Vol. I, Air Pollution III, Computational Mechanics Publications, 53–60.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9 9 9
PDF Downloads 9 9 9

Turbulent Flux Transfer over Bare-Soil Surfaces: Characteristics and Parameterization

View More View Less
  • * Department of Civil Engineering, University of Tokyo, Tokyo, Japan
  • | + Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan
  • | # Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea
  • | @ Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China
  • | & Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | ** State Key Laboratory of Remote Sensing Science, School of Geography, Beijing Normal University, Beijing, China
  • | ++ Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
Restricted access

Abstract

Parameterization of turbulent flux from bare-soil and undercanopy surfaces is imperative for modeling land–atmosphere interactions in arid and semiarid regions, where flux from the ground is dominant or comparable to canopy-sourced flux. This paper presents the major characteristics of turbulent flux transfers over seven bare-soil surfaces. These sites are located in arid, semiarid, and semihumid regions in Asia and represent a variety of conditions for aerodynamic roughness length (z0m; from <1 to 10 mm) and sensible heat flux (from −50 to 400 W m−2). For each site, parameter kB−1 [=ln(z0m/z0h), where z0h is the thermal roughness length] exhibits clear diurnal variations with higher values during the day and lower values at night. Mean values of z0h for the individual sites do not change significantly with z0m, resulting in kB−1 increasing with z0m, and thus the momentum transfer coefficient increases faster than the heat transfer coefficient with z0m. The term kB−1 often becomes negative at night for relatively smooth surfaces (z0m ∼ 1 mm), indicating that the widely accepted excess resistance for heat transfer can be negative, which cannot be explained by current theories for aerodynamically rough surfaces. Last, several kB−1 schemes are evaluated using the same datasets. The results indicate that a scheme that can reproduce the diurnal variation of kB−1 generally performs better than schemes that cannot.

Corresponding author address: Dr. Kun Yang, P.O. 2871, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China. Email: yangk@itpcas.ac.cn

Abstract

Parameterization of turbulent flux from bare-soil and undercanopy surfaces is imperative for modeling land–atmosphere interactions in arid and semiarid regions, where flux from the ground is dominant or comparable to canopy-sourced flux. This paper presents the major characteristics of turbulent flux transfers over seven bare-soil surfaces. These sites are located in arid, semiarid, and semihumid regions in Asia and represent a variety of conditions for aerodynamic roughness length (z0m; from <1 to 10 mm) and sensible heat flux (from −50 to 400 W m−2). For each site, parameter kB−1 [=ln(z0m/z0h), where z0h is the thermal roughness length] exhibits clear diurnal variations with higher values during the day and lower values at night. Mean values of z0h for the individual sites do not change significantly with z0m, resulting in kB−1 increasing with z0m, and thus the momentum transfer coefficient increases faster than the heat transfer coefficient with z0m. The term kB−1 often becomes negative at night for relatively smooth surfaces (z0m ∼ 1 mm), indicating that the widely accepted excess resistance for heat transfer can be negative, which cannot be explained by current theories for aerodynamically rough surfaces. Last, several kB−1 schemes are evaluated using the same datasets. The results indicate that a scheme that can reproduce the diurnal variation of kB−1 generally performs better than schemes that cannot.

Corresponding author address: Dr. Kun Yang, P.O. 2871, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China. Email: yangk@itpcas.ac.cn

Save