• Ackerman, S. A., K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, 1998: Discriminating clear-sky from clouds with MODIS. J. Geophys. Res., 103 , 3214132158.

    • Search Google Scholar
    • Export Citation
  • American Society for Testing and Materials, cited. 2000: Standard extraterrestrial spectrum reference E-490. [Available online at http://www.astm.org.].

  • Aminou, D. M. A., 2002: MSG’s SEVIRI instrument. Eur. Space Agency Bull., 111 , 1517.

  • Arking, A., and J. D. Childs, 1985: Retrieval of cloud cover parameters from mutispectral satellite images. J. Climate Appl. Meteor., 24 , 322333.

    • Search Google Scholar
    • Export Citation
  • Barnes, R. A., W. L. Barnes, C-H. Lyu, and J. M. Gales, 2000: An overview of the visible and infrared scanner radiometric calibration algorithm. J. Atmos. Oceanic Technol., 17 , 395405.

    • Search Google Scholar
    • Export Citation
  • Barnes, W. L., T. S. Pagano, and V. V. Salomonson, 1998: Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1. IEEE Trans. Geosci. Remote Sens., 30 , 227.

    • Search Google Scholar
    • Export Citation
  • Bell, K. L., and K. A. Berrington, 1987: Free-free absorption coefficient of the negative hydrogen ion. J. Phys. B, 20 , 801806.

  • Berk, A., and Coauthors, 2003: MODTRAN4 Version 3 Revision 1 User’s Manual. Air Force Research Laboratory, 91 pp.

  • Elterman, L., and R. B. Toolin, 1965: Handbook of Geophysics and Space Environments. S. L. Valley, Ed., McGraw-Hill.

  • Farmer, C. B., 1994: The ATMOS solar atlas. Infrared Solar Physics: Proceedings of the 154th Symposium of the International Astronomical Union, D. M. Rabin, J. T. Jefferies, and C. Lindsey, Eds., Kluwer Academic, 511–521.

    • Search Google Scholar
    • Export Citation
  • Fontenla, J. M., and J. W. Harder, 2005: Physical modeling of spectral irradiance variations. Mem. Soc. Astron. Ital., 76 , 826833.

  • Fontenla, J. M., O. R. White, P. A. Fox, E. H. Avrett, and R. L. Kurucz, 1999: Calculation of solar irradiances. I. Synthesis of the solar spectrum. Astrophys. J., 518 , 480499.

    • Search Google Scholar
    • Export Citation
  • Fontenla, J. M., E. Avrett, G. Thuillier, and J. Harder, 2006: Semiempirical models of the solar atmosphere. I. The quiet- and active sun photosphere at moderate resolution. Astrophys. J., 639 , 441458.

    • Search Google Scholar
    • Export Citation
  • Fontenla, J. M., K. S. Balasubramaniam, and J. Harder, 2007: Semi-empirical models of the solar atmosphere. II. The quiet-sun low chromosphere at moderate resolution. Astrophys. J., 667 , 12431257.

    • Search Google Scholar
    • Export Citation
  • Han, Q., W. B. Rossow, and A. A. Lacis, 1994: Near-global survey of effective droplet radii in liquid water clouds using ISCCP data. J. Climate, 7 , 465497.

    • Search Google Scholar
    • Export Citation
  • Harder, J. W., J. M. Fontenla, O. White, G. Rottman, and T. Woods, 2005: Solar spectral irradiance variability comparisons of the SORCE SIM instrument with monitors of solar activity and spectral synthesis. Mem. Soc. Astron. Ital., 76 , 735742.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., V. Rao, A. Dean, and C. Dean, 2002: Using MODIS to estimate cloud contamination of the AVHRR data record. J. Atmos. Oceanic Technol., 19 , 586601.

    • Search Google Scholar
    • Export Citation
  • John, T. L., 1988: Continuous absorption by the negative hydrogen ion reconsidered. Astron. Astrophys., 193 , 189192.

  • Justice, C. O., and Coauthors, 2002: The MODIS fire products. Remote Sens. Environ., 83 , 244262.

  • Kaufman, Y. J., C. J. Tucker, and I. Fung, 1990: Remote sensing of biomass burning in the tropics. J. Geophys. Res., 95 , 99279939.

  • King, M. D., and Coauthors, 1996: Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface properties. J. Atmos. Oceanic Technol., 13 , 777794.

    • Search Google Scholar
    • Export Citation
  • Kondratyev, K. Y., S. D. Andreev, I. Y. Badinov, V. S. Grishechkin, and L. V. Popova, 1965: Atmospheric optics investigations on Mt. Elbrus. Appl. Opt., 4 , 10691076.

    • Search Google Scholar
    • Export Citation
  • Koutchmy, S., and R. Peyturaux, 1970: Study of the solar continuum in the intermediate infra-red spectral range 3.5-24.4 μ. Astron. Astrophys., 5 , 470487.

    • Search Google Scholar
    • Export Citation
  • Kurucz, R. L., 1995: The solar irradiance by computation. Proceedings of the 17th Annual Review Conference on Atmospheric Transmission Models, G. P. Anderson, R. H. Picard, and J. H. Chetwynd, Eds., PL/-TR-95-2060, Special Rep. 274, Pl. 332, Phillips Laboratory Geophysics Directorate.

  • Lee, T. E., S. D. Miller, F. J. Turk, C. Schueler, R. Julian, S. Deyo, P. Dills, and S. Wang, 2006: The NPOESS VIIRS day/night visible sensor. Bull. Amer. Meteor. Soc., 87 , 191199.

    • Search Google Scholar
    • Export Citation
  • Livingston, W., and L. Wallace, 1991: An atlas of the solar spectrum in the infrared from 1.1 to 5.4 μm. National Solar Observatory Tech. Rep. 91-001.

  • Montgomery, H., N. Che, K. Parker, and J. Bower, 2000: The algorithm for MODIS wavelength on-orbit calibration using the SRCA. IEEE Trans. Geosci. Remote Sens., 38 , 877884.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 1995: Cloud optical property retrieval (subsystem 4.3). Clouds and the Earth’s Radiant Energy System (CERES) Algorithm Theoretical Basis Document, Volume III: Cloud Analyses and Radiance Inversions (subsystem 4), CERES Science Team, Eds., NASA Rep. 1376, Vol. 3, 135–176.

  • Murcray, F. H., D. G. Murcray, and W. J. Williams, 1964: The spectral radiance of the sun from 4 micrometer to 5 micrometer. Appl. Opt., 3 , 13731377.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T. Y., T. Nakajima, M. Nakajima, H. Fukushima, M. Kuji, A. Uchiyama, and M. Kishino, 1998: Optimization of the Advanced Earth Observing Satellite II Global Imager channels by use of radiative transfer calculations. Appl. Opt., 37 , 31493163.

    • Search Google Scholar
    • Export Citation
  • Pavolonis, M. J., A. K. Heidinger, and T. Uttal, 2005: Daytime global cloud typing from AVHRR and VIIRS: Algorithm description, validation, and comparisons. J. Appl. Meteor., 44 , 804826.

    • Search Google Scholar
    • Export Citation
  • Pierce, A. K., and R. G. Allen, 1977: The solar spectrum between 3 and 10 μm. The Solar Output and its Variation, O. R. White, Ed., Colorado Associated University Press, 169–192.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., and S. Twomey, 1994: Determining the susceptibility of cloud albedo to changes in droplet concentrations with the Advanced Very High Resolution Radiometer. J. Appl. Meteor., 33 , 334347.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riédi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41 , 459473.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., R. Pincus, B. Wind, M. D. King, M. A. Gray, and P. Hubanks, 2004: An initial analysis of the pixel-level uncertainties in global MODIS cloud optical thickness and effective particle size retrievals. Passive Optical Remote Sensing of the Atmosphere and Clouds IV, S. C. Tsay, T. Yokota, and M.-H. Ahn, Eds., International Society for Optical Engineering (SPIE Proceedings Vol. 5652), 30–40.

  • Prins, E. M., and W. P. Menzel, 1992: Geostationary satellite detection of biomass burning in South America. Int. J. Remote Sens., 13 , 27832799.

    • Search Google Scholar
    • Export Citation
  • Rottman, G., J. Harder, J. Fontenla, T. Woods, O. R. White, and G. M. Lawrence, 2005: The spectral irradiance monitor (SIM): Early observations. Sol. Phys., 230 , 205244.

    • Search Google Scholar
    • Export Citation
  • Saunders, R. W., and K. T. Kriebel, 1988: An improved method for detecting clear sky and cloudy radiances from AVHRR data. Int. J. Remote Sens., 9 , 123150.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., M. M. Gunshor, W. Paul Menzel, J. Li, S. Bachmeier, and J. J. Gurka, 2005: Introducing the next-generation Advanced Baseline Imager (ABI) on GOES-R. Bull. Amer. Meteor. Soc., 86 , 10791096.

    • Search Google Scholar
    • Export Citation
  • Schwalb, A., 1978: The TIROS-N/NOAA A-G satellite series. NOAA Tech. Memo. NESS 95, 75 pp.

  • Scorer, R. S., 1986: Cloud Investigation by Satellite. Halsted Press, 300 pp.

  • Scorer, R. S., 1989: Cloud reflectance in channel-3. Int. J. Remote Sens., 10 , 675686.

  • Smith, E. V. P., and D. M. Gottlieb, 1974: Solar flux and its variation. Space Sci. Rev., 16 , 771802.

  • Thekaekara, M. P., 1974: Extraterrestrial solar spectrum, 3000-6100 Å at 1-Å intervals. Appl. Opt., 13 , 518522.

  • Thekaekara, M. P., R. Kruger, and C. H. Duncan, 1969: Solar irradiance measurements from a research aircraft. Appl. Opt., 8 , 17131732.

    • Search Google Scholar
    • Export Citation
  • Thuillier, G., M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, 2003: The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the Atlas and Eureca missions. Sol. Phys., 214 , 122.

    • Search Google Scholar
    • Export Citation
  • Trishchenko, A. P., 2002: Removing unwanted fluctuations in the AVHRR thermal calibration data using robust techniques. J. Atmos. Oceanic Technol., 19 , 19391954.

    • Search Google Scholar
    • Export Citation
  • Trishchenko, A. P., 2006: Solar irradiance and effective brightness temperature for SWIR channels of AVHRR/NOAA and GOES imagers. J. Atmos. Oceanic Technol., 23 , 198210.

    • Search Google Scholar
    • Export Citation
  • Trishchenko, A. P., G. Fedosejevs, Z. Li, and J. Cihlar, 2002: Trends and uncertainties in thermal calibration of AVHRR radiometers onboard NOAA-9 to NOAA-16. J. Geophys. Res., 107 .4778, doi:10.1029/2002JD002353.

    • Search Google Scholar
    • Export Citation
  • Wehrli, C., 1985: Extraterrestrial solar spectrum. Physikalisch-Meteorologisches Observatorium Davos and World Radiation Center, Publication 615. [Available online at ftp://ftp.pmodwrc.ch/pub/data/irradiance/spectral_irradiance/wrc_spectrum.asc.].

  • Xiong, X., N. Che, B. Guenther, W. L. Barnes, and V. V. Salomonson, 2005a: Five years of Terra MODIS on-orbit spectral characterization. Earth Observing Systems X, J. J. Butler, Ed., International Society for Optical Engineering (SPIE Proceedings Vol. 5882), doi:10.1117/12.614090.

  • Xiong, X., J. Sun, A. Wu, K-F. Chiang, J. Esposito, and W. Barnes, 2005b: Terra and Aqua MODIS calibration algorithms and uncertainty analysis. Sensors, Systems, and Next-Generation Satellites IX, R. Meynart, S. P. Neeck, and H. Shimoda, Eds., International Society for Optical Engineering (SPIE Proceedings Vol. 5978), doi:10.1117/12.627631.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3 3 3
PDF Downloads 2 2 2

Model Calculations of Solar Spectral Irradiance in the 3.7-μm Band for Earth Remote Sensing Applications

View More View Less
  • 1 Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 2 Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado
Restricted access

Abstract

Since the launch of the first Advanced Very High Resolution Radiometer (AVHRR) instrument aboard the Television and Infrared Observational Satellite (TIROS-N), measurements in the 3.7-μm atmospheric window have been exploited for use in cloud detection and screening, cloud thermodynamic phase and surface snow/ice discrimination, and quantitative cloud particle size retrievals. The utility of the band has led to the incorporation of similar channels on a number of existing satellite imagers and future operational imagers. Daytime observations in the band include both reflected solar and thermal emission energy. Since 3.7-μm channels are calibrated to a radiance scale (via onboard blackbodies), knowledge of the top-of-atmosphere solar irradiance in the spectral region is required to infer reflectance. Despite the ubiquity of 3.7-μm channels, absolute solar spectral irradiance data come from either a single measurement campaign (Thekaekara et al.) or synthetic spectra. In the current study, the historical 3.7-μm band spectral irradiance datasets are compared with the recent semiempirical solar model of the quiet sun by Fontenla et al. The model has expected uncertainties of about 2% in the 3.7-μm spectral region. The channel-averaged spectral irradiances using the observations reported by Thekaekara et al. are found to be 3.2%–4.1% greater than those derived from the Fontenla et al. model for Moderate Resolution Imaging Spectroradiometer (MODIS) and AVHRR instrument bandpasses; the Kurucz spectrum, as included in the Moderate Spectral Resolution Atmospheric Transmittance (MODTRAN4) distribution, gives channel-averaged irradiances 1.2%–1.5% smaller than the Fontenla model. For the MODIS instrument, these solar irradiance uncertainties result in cloud microphysical retrieval uncertainties that are comparable to other fundamental reflectance error sources.

Corresponding author address: S. Platnick, Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, MD 20771. Email: steven.platnick@nasa.gov

Abstract

Since the launch of the first Advanced Very High Resolution Radiometer (AVHRR) instrument aboard the Television and Infrared Observational Satellite (TIROS-N), measurements in the 3.7-μm atmospheric window have been exploited for use in cloud detection and screening, cloud thermodynamic phase and surface snow/ice discrimination, and quantitative cloud particle size retrievals. The utility of the band has led to the incorporation of similar channels on a number of existing satellite imagers and future operational imagers. Daytime observations in the band include both reflected solar and thermal emission energy. Since 3.7-μm channels are calibrated to a radiance scale (via onboard blackbodies), knowledge of the top-of-atmosphere solar irradiance in the spectral region is required to infer reflectance. Despite the ubiquity of 3.7-μm channels, absolute solar spectral irradiance data come from either a single measurement campaign (Thekaekara et al.) or synthetic spectra. In the current study, the historical 3.7-μm band spectral irradiance datasets are compared with the recent semiempirical solar model of the quiet sun by Fontenla et al. The model has expected uncertainties of about 2% in the 3.7-μm spectral region. The channel-averaged spectral irradiances using the observations reported by Thekaekara et al. are found to be 3.2%–4.1% greater than those derived from the Fontenla et al. model for Moderate Resolution Imaging Spectroradiometer (MODIS) and AVHRR instrument bandpasses; the Kurucz spectrum, as included in the Moderate Spectral Resolution Atmospheric Transmittance (MODTRAN4) distribution, gives channel-averaged irradiances 1.2%–1.5% smaller than the Fontenla model. For the MODIS instrument, these solar irradiance uncertainties result in cloud microphysical retrieval uncertainties that are comparable to other fundamental reflectance error sources.

Corresponding author address: S. Platnick, Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, MD 20771. Email: steven.platnick@nasa.gov

Save