• Adler, R. F., G. J. Huffman, A. Chang, and R. Ferraro, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4 , 11471167.

    • Search Google Scholar
    • Export Citation
  • Ali, A., T. Lebel, and A. Amani, 2005a: Rainfall estimation in the Sahel. Part I: Error function. J. Appl. Meteor., 44 , 16911706.

  • Ali, A., A. Amani, A. Diedhiou, and T. Lebel, 2005b: Rainfall estimation in the Sahel. Part II: Evaluation of rain gauge networks in the CILSS countries and objective intercomparison of rainfall products. J. Appl. Meteor., 44 , 17071722.

    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., and P. E. Ardanuy, 1989: Estimating climatic-scale precipitation from space: A review. J. Climate, 2 , 12291238.

  • Ba, M. B., R. Frouin, and S. E. Nicholson, 1995: Satellite-derived interannual variability of West African rainfall during 1983–88. J. Appl. Meteor., 34 , 411431.

    • Search Google Scholar
    • Export Citation
  • Barrett, E. C., and D. W. Martin, 1981: The Use of Satellite Data in Rainfall Monitoring. Academic Press, 340 pp.

  • Beck, C., J. Grieser, and B. Rudolf, 2005: A new monthly precipitation climatology for the global land areas for the period 1951 to 2000. German Weather Service. Climate Status Rep. (Klimastatusbericht) 2004, 181–190.

    • Search Google Scholar
    • Export Citation
  • Chapa, S. R., J. R. Milford, and G. Dugdale, 1993: Climatology of satellite-derived cold cloud duration over sub-Saharan Africa. Proc. Ninth Meteosat Scientific Users’ Meeting, Locarno, Switzerland, EUMESAT, 245–250.

  • Dai, A., I. Y. Fung, and A. D. Del Genio, 1997: Surface observed global land precipitation variations during 1900–1988. J. Climate, 10 , 29432962.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., R. Saravanan, and P. Chang, 2003: Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science, 302 , 10271030.

    • Search Google Scholar
    • Export Citation
  • Glickman, T., 2000: Glossary of Meteorology. 2nd ed. Amer. Meteor. Soc., 855 pp.

  • Gregory, S., 1978: Statistical Methods and the Geographer. 4th ed. Pearson, 256 pp.

  • Grimes, D. I. F., E. Pardo-Iguzquiza, and R. Bonifacio, 1999: Optimal areal rainfall estimation using raingauges and satellite data. J. Hydrol., 222 , 93108.

    • Search Google Scholar
    • Export Citation
  • Grimes, D. I. F., E. Coppola, M. Verdecchia, and G. Visconti, 2003: A neural network approach to real-time rainfall estimation for Africa using satellite data. J. Hydrometeor., 4 , 11191133.

    • Search Google Scholar
    • Export Citation
  • Grist, J., S. E. Nicholson, and A. Mpolokang, 1997: On the use of NDVI for estimating rainfall fields in the Kalahari of Botswana. J. Arid Environ., 35 , 195214.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 1994: Global Physical Climatology. Academic Press, 411 pp.

  • Hayward, D. F., and J. S. Oguntoyinbo, 1987: Climatology of West Africa. Barnes & Noble, 271 pp.

  • Helsel, D. R., and R. M. Hirsch, 1991: Statistical Methods in Water Resources:. Techniques of Water-Resources Investigations. Book 4, Hydrologic Analysis and Interpretation, United States Geological Survey, 510 pp.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, B. Rudolf, U. Schneider, and P. R. Keehn, 1995: Global precipitation estimates based on a technique for combining satellite-based estimates, rain gauge analysis, and NWP model precipitation information. J. Climate, 8 , 12841295.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78 , 520.

    • Search Google Scholar
    • Export Citation
  • Hulme, M., 1995: Estimating global changes in precipitation. Weather, 50 , 3442.

  • Karl, T. R., and R. W. Knight, 1998: Secular trends of precipitation amount, frequency, and intensity in the United States. Bull. Amer. Meteor. Soc., 79 , 231241.

    • Search Google Scholar
    • Export Citation
  • Kidd, C. K., 2001: Satellite rainfall climatology: A review. Int. J. Climatol., 21 , 10411066.

  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39 , 19651982.

    • Search Google Scholar
    • Export Citation
  • Laurent, H., T. Lebel, and J. Polcher, 1997: Rainfall variability in Soudano–Sahelian Africa studied from rain gauges, satellite and GCM. Preprints, 13th Conf. on Hydrology, Long Beach, CA, Amer. Meteor. Soc., 17–20.

  • Laurent, H., J. Jobard, and A. Toma, 1998a: Validation of satellite and ground-based estimates of precipitation over the Sahel. Atmos. Res., 47–48 , 651670.

    • Search Google Scholar
    • Export Citation
  • Laurent, H., N. D’Amato, and T. Lebel, 1998b: How important is the contribution of the mesoscale convective complexes to the Sahelian rainfall? Phys. Chem. Earth,, 23 , 629633.

    • Search Google Scholar
    • Export Citation
  • Mathon, V., H. Laurent, and T. Lebel, 2002: Mesoscale convective system rainfall in the Sahel. J. Appl. Meteor., 41 , 10811092.

  • McCollum, J. R., and R. F. Ferraro, 2005: Microwave rainfall estimation over coasts. J. Atmos. Oceanic Technol., 22 , 497512.

  • McCollum, J. R., A. Gruber, and M. B. Ba, 2000: Discrepancy between gauges and satellite estimates of rainfall in equatorial Africa. J. Appl. Meteor., 39 , 666679.

    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1995: The coefficients of correlation and determination as measures of performance in forecast verification. Wea. Forecasting, 10 , 681688.

    • Search Google Scholar
    • Export Citation
  • New, M., M. Hulme, and P. Jones, 1999: Representing twentieth-century space–time climate variability. Part I: Development of 1961–90 mean monthly terrestrial climatology. J. Climate, 12 , 829856.

    • Search Google Scholar
    • Export Citation
  • New, M., M. Hulme, and P. Jones, 2000: Representing twentieth-century space–time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. J. Climate, 13 , 22172238.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 1980: The nature of rainfall fluctuations in subtropical West Africa. Mon. Wea. Rev., 108 , 473487.

  • Nicholson, S. E., 1994: On the use of the normalized difference vegetation index as an indicator of rainfall. Global Precipitations and Climate Change, M. Desbois and F. Désalmand, Eds., Springer-Verlag.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 2005: On the question of the “recovery” of the rains in the West African Sahel. J. Arid Environ., 63 , 615641.

  • Nicholson, S. E., and Coauthors, 2003: Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa. Part II: Validation of TRMM rainfall products. J. Appl. Meteor., 42 , 13551368.

    • Search Google Scholar
    • Export Citation
  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Plannery, 1996: Numerical Recipes in Fortran 90:. The Art of Parallel Scientific Computing. 2nd ed. Vol. 2, Fortran Numerical Recipes, Cambridge University Press, 576 pp.

    • Search Google Scholar
    • Export Citation
  • Rudolf, B., H. Hauschild, W. Ruth, and U. Schneider, 1994: Terrestrial precipitation analysis: Operational method and required density of point measurements. Global Precipitation and Climate Change, M. Dubois and F. Désalmand, Eds., Springer-Verlag, 173–186.

    • Search Google Scholar
    • Export Citation
  • Sealy, A., G. S. Jenkins, and S. C. Walford, 2003: Seasonal/regional comparisons of rain characteristics in West Africa using TRMM observations. J. Geophys. Res., 108 .4306, doi:10.1029/2002JD002667.

    • Search Google Scholar
    • Export Citation
  • Siegel, S., and N. J. Castellan Jr., 1988: Nonparametric Statistics for the Behavioral Sciences. 2nd ed. McGraw-Hill, 399 pp.

  • Snijders, F. L., 1991: Rainfall monitoring based on Meteosat data—A comparison of techniques applied to the western Sahel. Int. J. Remote Sens., 12 , 13311347.

    • Search Google Scholar
    • Export Citation
  • Thorne, V., P. Coakeley, D. Grimes, and G. Dugdale, 2001: Comparison of TAMSAT and CPC rainfall estimates with raingauges, for southern Africa. Int. J. Remote Sens., 22 , 19511974.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78 , 27712777.

  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

  • Xie, P., and P. A. Arkin, 1995: An intercomparison of gauge observations and satellite estimates of monthly precipitation. J. Appl. Meteor., 34 , 11431160.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Yin, X., A. Gruber, and P. Arkin, 2004: Comparison of the GPCP and CMAP merged gauge–satellite monthly precipitation products for the period 1979–2001. J. Hydrometeor., 5 , 12071222.

    • Search Google Scholar
    • Export Citation
  • Zeng, N., 2003: Drought in the Sahel. Science, 302 , 9991000.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5 5 5
PDF Downloads 2 2 2

Comparison of Gridded Multisatellite Rainfall Estimates with Gridded Gauge Rainfall over West Africa

View More View Less
  • 1 National Center for Atmospheric Research,* Boulder, Colorado
Restricted access

Abstract

Two monthly gridded precipitation datasets of the Global Precipitation Climatology Project (GPCP; the multisatellite product) and the Global Precipitation Climatology Centre (GPCC) Variability Analysis of Surface Climate Observations (VASClimO; rain gauge data) are compared for a 22-yr period, from January 1979 to December 2000, over land areas (i.e., latitudes 4°–20°N and longitudes 18°W–15°E). The two datasets are consistent with respect to the spatial distribution of the annual and seasonal rainfall climatology over the domain and along latitudinal bands. However, the satellite generally overestimates rainfall. The inability of the GPCC data to capture the bimodal rainfall pattern along the Guinea coast (i.e., south of latitude 8°N) is an artifact of the interpolation of the rain gauge data. For interannual variability, the gridded multisatellite and gridded gauge datasets agree on the sign of the anomaly 15 out of the 22 yr (68% of the time) for region 1 (between longitude 5° and 18°W and north of latitude 8°N) and 18 out of the 22 yr (82% of the time) for region 2 (between longitude 5°W and 15°E and north of latitude 8°N). The datasets agreed on the sign of the anomaly 14 out of the 22 yr (64% of the time) over the Guinea Coast. The magnitudes of the anomaly are very different in all years. Most of the years during which the two datasets did not agree on the sign of the anomaly were years with El Niño events. The ratio of the seasonal root-mean-square differences to the seasonal mean rainfall range between 0.24 and 2.60. The Kendall’s tau statistic indicated statistically significant trends in both datasets, separately.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Dr. Benjamin L. Lamptey, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80301. Email: lamptey@ucar.edu

Abstract

Two monthly gridded precipitation datasets of the Global Precipitation Climatology Project (GPCP; the multisatellite product) and the Global Precipitation Climatology Centre (GPCC) Variability Analysis of Surface Climate Observations (VASClimO; rain gauge data) are compared for a 22-yr period, from January 1979 to December 2000, over land areas (i.e., latitudes 4°–20°N and longitudes 18°W–15°E). The two datasets are consistent with respect to the spatial distribution of the annual and seasonal rainfall climatology over the domain and along latitudinal bands. However, the satellite generally overestimates rainfall. The inability of the GPCC data to capture the bimodal rainfall pattern along the Guinea coast (i.e., south of latitude 8°N) is an artifact of the interpolation of the rain gauge data. For interannual variability, the gridded multisatellite and gridded gauge datasets agree on the sign of the anomaly 15 out of the 22 yr (68% of the time) for region 1 (between longitude 5° and 18°W and north of latitude 8°N) and 18 out of the 22 yr (82% of the time) for region 2 (between longitude 5°W and 15°E and north of latitude 8°N). The datasets agreed on the sign of the anomaly 14 out of the 22 yr (64% of the time) over the Guinea Coast. The magnitudes of the anomaly are very different in all years. Most of the years during which the two datasets did not agree on the sign of the anomaly were years with El Niño events. The ratio of the seasonal root-mean-square differences to the seasonal mean rainfall range between 0.24 and 2.60. The Kendall’s tau statistic indicated statistically significant trends in both datasets, separately.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Dr. Benjamin L. Lamptey, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80301. Email: lamptey@ucar.edu

Save