• Ackerman, T., and G. Stokes, 2003: The Atmospheric Radiation Measurement Program. Phys. Today, 56 , 3845.

  • Borbas, E., S. W. Seemann, H-L. Huang, J. Li, and W. P. Menzel, 2005: Global profile training database for satellite regression retrievals with estimates of skin temperature and emissivity. Proc. Int. ATOVS Study Conf. XIV, Beijing, China, CIMSS/University of Wisconsin—Madison, 763–770. [Available online at http://cimss.ssec.wisc.edu/itwg/itsc/itsc14/proceedings/2_9_Borbas.pdf.].

  • Borbas, E., and Coauthors, 2007: A global infrared land surface emissivity database and its validation. Preprints, 11th Symp. on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface, San Antonio, TX, Amer. Meteor. Soc., P2.7.

  • Chedin, A., N. A. Scott, C. Wahiche, and P. Moulinier, 1985: The improved initialization inversion method: A high resolution physical method for temperature retrievals from satellites of the TIROS-N series. J. Climate Appl. Meteor., 24 , 128143.

    • Search Google Scholar
    • Export Citation
  • Chevallier, F., 2001: Sampled databases of 60-level atmospheric profiles from the ECMWF analyses. Numerical Weather Prediction Satellite Application Facility Research Rep. 4, 28 pp.

  • Dozier, J., and Z. Wan, 1994: Development of practical multiband algorithms for estimating land-surface temperature from EOS/MODIS data. Adv. Space Res., 14 , 3. 8190.

    • Search Google Scholar
    • Export Citation
  • Gillespie, A., S. Rokugawa, S. Hook, T. Matsunaga, and A. Kahle, 1999: Temperature/emissivity separation algorithm theoretical basis document, version 2.4. NASA Contract NAS5-31372, 64 pp. [Available online at http://eospso.gsfc.nasa.gov/eos_ homepage/for_scientists/atbd/docs/ASTER/atbd-ast-05-08.pdf.].

  • Hayden, C. M., 1988: GOES-VAS simultaneous temperature-moisture retrieval algorithm. J. Appl. Meteor., 27 , 705733.

  • Hook, S. J., T. J. Cudahy, A. B. Kahle, and L. B. Whitbourn, 1998: Synergy of active and passive airborne thermal infrared systems for surface compositional mapping. J. Geophys. Res., 103 , B8. 1826918276.

    • Search Google Scholar
    • Export Citation
  • Hook, S. J., W. B. Clodius, L. Balick, R. E. Alley, A. Abtahi, R. C. Richards, and S. G. Schladow, 2005: In-flight validation of mid and thermal infrared data from the Multispectral Thermal Imager (MTI) using an automated high altitude validation site at Lake Tahoe CA/NV, USA. IEEE Trans. Geosci. Remote Sens., 43 , 19911999.

    • Search Google Scholar
    • Export Citation
  • Hunt, G. R., 1980: Electromagnetic radiation: The communication link in remote sensing. Remote Sensing in Geology, B. S. Siegal and A. R. Gillespie, Eds., John Wiley and Sons, 5–45.

    • Search Google Scholar
    • Export Citation
  • Kleespies, T. J., P. van Delst, L. M. McMillin, and J. Derber, 2004: Atmospheric transmittance of an absorbing gas. 6. OPTRAN status report and introduction to the NESDIS/NCEP Community Radiative Transfer Model. Appl. Opt., 43 , 31033109.

    • Search Google Scholar
    • Export Citation
  • Knuteson, R., F. Best, D. DeSlover, B. Osborne, H. Revercomb, and W. Smith Sr., 2004: Infrared land surface remote sensing using high spectral resolution aircraft observations. Adv. Space Res., 33 , 11141119.

    • Search Google Scholar
    • Export Citation
  • Korb, A. R., P. Dybwad, W. Wadsworth, and J. W. Salisbury, 1996: Portable Fourier transform infrared spectroradiometer for field measurement of radiance and emissivity. Appl. Opt., 35 , 16791692.

    • Search Google Scholar
    • Export Citation
  • Kornfield, J., and J. Susskind, 1977: On the effect of surface emissivity on temperature retrievals. Mon. Wea. Rev., 105 , 16051608.

  • Li, J., W. Wolf, W. P. Menzel, W. Zhang, H-L. Huang, and T. H. Achtor, 2000: Global soundings of the atmosphere from ATOVS measurements: The algorithm and validation. J. Appl. Meteor., 39 , 12481268.

    • Search Google Scholar
    • Export Citation
  • Liljegren, J. C., and B. M. Lesht, 1996: Measurements of integrated water vapor and cloud liquid water from microwave radiometers at the DOE ARM cloud and radiation testbed in the US Southern Great Plains. Proc. Int. Geoscience and Remote Sensing Symp., Lincoln, NE, IEEE, 1675–1677.

  • Moy, L., E. Borbas, S. Seemann, H-L. Huang, R. Knuteson, I. Trigo, and L. Zhou, 2006: Comparison of land surface infrared emissivity from MODIS, AIRS, and SEVIRI. Eos, Trans. Amer. Geophys. Union, 87 .(Fall Meeting Suppl.), Abstract A21D-0850.

    • Search Google Scholar
    • Export Citation
  • Ogawa, K., and T. Schmugge, 2004: Mapping surface broadband emissivity of the Sahara desert using ASTER and MODIS data. Earth Interactions, 8 . [Available online at http://EarthInteractions.org.].

    • Search Google Scholar
    • Export Citation
  • Prabhakara, C., and G. Dalu, 1976: Remote sensing of the surface emissivity at 9 μm over the globe. J. Geophys. Res., 81 , 37193724.

  • Salisbury, J. W., and D. M. D’Aria, 1992: Emissivity of terrestrial materials in the 8-14 μm atmospheric window. Remote Sens. Environ., 42 , 83106.

    • Search Google Scholar
    • Export Citation
  • Salisbury, J. W., and D. M. D’Aria, 1994: Emissivity of terrestrial materials in the 3-5 μm atmospheric window. Remote Sens. Environ., 47 , 345361.

    • Search Google Scholar
    • Export Citation
  • Salisbury, J. W., A. Wald, and D. M. D’Aria, 1994: Thermal-infrared remote sensing and Kirchhoff’s law 1. Laboratory measurements. J. Geophys. Res., 99 , 1189711911.

    • Search Google Scholar
    • Export Citation
  • Schmugge, S., J. Hook, and C. Coll, 1998: Recovering surface temperature and emissivity from thermal infrared multispectral data. Remote Sens. Environ., 65 , 2. 121131.

    • Search Google Scholar
    • Export Citation
  • Seemann, S. W., J. Li, W. P. Menzel, and L. E. Gumley, 2003: Operational retrieval of atmospheric temperature, moisture, and ozone from MODIS infrared radiances. J. Appl. Meteor., 42 , 10721091.

    • Search Google Scholar
    • Export Citation
  • Seemann, S. W., E. Borbas, J. Li, W. P. Menzel, and L. E. Gumley, cited. 2006: MODIS atmospheric profile retrieval algorithm theoretical basis document. [Available online at http://modis.gsfc.nasa.gov/data/atbd/atbd_mod07.pdf or http://modis.gsfc.nasa.gov/data/atbd/atmos_atbd.php.].

  • Snyder, W., and Z. Wan, 1998: BRDF models to predict spectral reflectance and emissivity in the infrared. IEEE Trans. Geosci. Remote Sens., 36 , 214225.

    • Search Google Scholar
    • Export Citation
  • Stokes, G. M., and S. E. Schwartz, 1994: The Atmospheric Radiation Measurement (ARM) program: Programmatic background and design of the cloud and radiation testbed. Bull. Amer. Meteor. Soc., 75 , 12011221.

    • Search Google Scholar
    • Export Citation
  • Wan, Z., 1999: MODIS land-surface temperature algorithm theoretical basis document (LST ATBD). Tech. Rep. version 3.3, Institute for Computational Earth System Science, University of California, Santa Barbara, 77 pp. [Available online at http://modis.gsfc.nasa.gov/data/atbd/atbd_mod11.pdf.].

  • Wan, Z., and Z-L. Li, 1997: A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data. IEEE Trans. Geosci. Remote Sens., 35 , 980996.

    • Search Google Scholar
    • Export Citation
  • Wan, Z., Y. Zhang, Q. Zhang, and Z-L. Li, 2004: Quality assessment and validation of the MODIS global land surface temperature. Int. J. Remote Sens., 25 , 261274.

    • Search Google Scholar
    • Export Citation
  • Westwater, E. R., 1993: Ground-based microwave remote sensing of meteorological variables. Atmospheric Remote Sensing by Microwave Radiometry, M. A. Jensen, Ed., Wiley, 145–213.

    • Search Google Scholar
    • Export Citation
  • Wu, X., and W. L. Smith, 1997: Emissivity of rough sea surface for 8-13 μm: Modeling and verification. Appl. Opt., 36 , 26092619.

  • Zhou, D. K., A. M. Larar, W. L. Smith, and X. Liu, 2006: Surface emissivity effects on thermodynamic retrieval of IR spectral radiance. Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques, and Applications, W. L. Smith Sr. et al., Eds., International Society for Optical Engineering (SPIE Proceedings Vol. 6405), doi:10.1117/12.694283.

    • Search Google Scholar
    • Export Citation
  • Zhou, L., R. E. Dickinson, Y. Tian, M. Jin, K. Ogawa, H. Yu, and T. Schmugge, 2003: A sensitivity study of climate and energy balance simulations with use of satellite derived emissivity data over Northern Africa and the Arabian Peninsula. J. Geophys. Res., 108 .4795, doi:10.1029/2003JD004083.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 11 11 11
PDF Downloads 5 5 5

Development of a Global Infrared Land Surface Emissivity Database for Application to Clear Sky Sounding Retrievals from Multispectral Satellite Radiance Measurements

View More View Less
  • 1 Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin
Restricted access

Abstract

A global database of infrared (IR) land surface emissivity is introduced to support more accurate retrievals of atmospheric properties such as temperature and moisture profiles from multispectral satellite radiance measurements. Emissivity is derived using input from the Moderate Resolution Imaging Spectroradiometer (MODIS) operational land surface emissivity product (MOD11). The baseline fit method, based on a conceptual model developed from laboratory measurements of surface emissivity, is applied to fill in the spectral gaps between the six emissivity wavelengths available in MOD11. The six available MOD11 wavelengths span only three spectral regions (3.8–4, 8.6, and 11–12 μm), while the retrievals of atmospheric temperature and moisture from satellite IR sounder radiances require surface emissivity at higher spectral resolution. Emissivity in the database presented here is available globally at 10 wavelengths (3.6, 4.3, 5.0, 5.8, 7.6, 8.3, 9.3, 10.8, 12.1, and 14.3 μm) with 0.05° spatial resolution. The wavelengths in the database were chosen as hinge points to capture as much of the shape of the higher-resolution emissivity spectra as possible between 3.6 and 14.3 μm. The surface emissivity from this database is applied to the IR regression retrieval of atmospheric moisture profiles using radiances from MODIS, and improvement is shown over retrievals made with the typical assumption of constant emissivity.

* Current affiliation: Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Corresponding author address: Suzanne W. Seemann, CIMSS/UW-Madison, 1225 W. Dayton St., Madison, WI 53716. Email: suzanne.seemann@ssec.wisc.edu

Abstract

A global database of infrared (IR) land surface emissivity is introduced to support more accurate retrievals of atmospheric properties such as temperature and moisture profiles from multispectral satellite radiance measurements. Emissivity is derived using input from the Moderate Resolution Imaging Spectroradiometer (MODIS) operational land surface emissivity product (MOD11). The baseline fit method, based on a conceptual model developed from laboratory measurements of surface emissivity, is applied to fill in the spectral gaps between the six emissivity wavelengths available in MOD11. The six available MOD11 wavelengths span only three spectral regions (3.8–4, 8.6, and 11–12 μm), while the retrievals of atmospheric temperature and moisture from satellite IR sounder radiances require surface emissivity at higher spectral resolution. Emissivity in the database presented here is available globally at 10 wavelengths (3.6, 4.3, 5.0, 5.8, 7.6, 8.3, 9.3, 10.8, 12.1, and 14.3 μm) with 0.05° spatial resolution. The wavelengths in the database were chosen as hinge points to capture as much of the shape of the higher-resolution emissivity spectra as possible between 3.6 and 14.3 μm. The surface emissivity from this database is applied to the IR regression retrieval of atmospheric moisture profiles using radiances from MODIS, and improvement is shown over retrievals made with the typical assumption of constant emissivity.

* Current affiliation: Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Corresponding author address: Suzanne W. Seemann, CIMSS/UW-Madison, 1225 W. Dayton St., Madison, WI 53716. Email: suzanne.seemann@ssec.wisc.edu

Save