• Albini, F. A., 1981: A phenomenological model for wind speed and shear stress profiles in vegetation cover layers. J. Appl. Meteor., 20 , 13251335.

    • Search Google Scholar
    • Export Citation
  • Allen Jr., L. H., 1968: Turbulence and wind speed spectra within a Japanese larch plantation. J. Appl. Meteor., 7 , 7378.

  • Amiro, B. D., 1990: Comparison of turbulence statistics within three boreal forest canopies. Bound.-Layer Meteor., 51 , 99121.

  • Ayotte, K. W., J. J. Finnigan, and M. R. Raupach, 1999: A second-order closure for neutrally stratified vegetative canopy flows. Bound.-Layer Meteor., 90 , 189216.

    • Search Google Scholar
    • Export Citation
  • Baldocchi, D. D., and T. P. Meyers, 1988: Turbulence structure in a deciduous forest. Bound.-Layer Meteor., 43 , 345364.

  • Barr, S., 1971: Modeling study of several aspects of canopy flow. Mon. Wea. Rev., 99 , 485493.

  • Belcher, S. E., N. Jerram, and J. C. R. Hunt, 2003: Adjustment of a turbulent boundary layer to a canopy of roughness elements. J. Fluid Mech., 488 , 369398.

    • Search Google Scholar
    • Export Citation
  • Bergen, J. D., 1971: Vertical profiles of windspeed in a pine stand. For. Sci., 17 , 314322.

  • Bohm, M., J. J. Finnigan, and M. R. Raupach, 2000: Dispersive fluxes and canopy flows: Just how important are they? Preprints. 24th Conf. on Agricultural and Forest Meteorology, Davis, CA, Amer. Meteor. Soc., 106–107.

    • Search Google Scholar
    • Export Citation
  • Boussinesq, J., 1877: Theorie de l’ecoulement tourbillant. Mem. Presentés Acad. Sci. Paris, 23 , 5658.

  • Brunet, Y., J. J. Finnigan, and M. R. Raupach, 1994: A wind tunnel study of air flow in waving wheat: Single-point velocity statistics. Bound.-Layer Meteor., 70 , 95132.

    • Search Google Scholar
    • Export Citation
  • Brunt, D., 1939: Physical and Dynamical Meteorology. 2nd ed. Cambridge University Press, 428 pp.

  • Cheng, H., and I. Castro, 2002: Near wall flow over urban-like roughness. Bound.-Layer Meteor., 104 , 229259.

  • Christen, A., and R. Vogt, 2004: Direct measurements of dispersive fluxes within a cork oak canopy. Preprints, 26th Conf. on Agricultural and Forest Meteorology, Vancouver, BC, Canada, Amer. Meteor. Soc., 23–27.

  • Cionco, R. M., 1965: A mathematical model for air flow in a vegetation canopy. J. Appl. Meteor., 4 , 517522.

  • Cionco, R. M., 1972: A wind-profile index for canopy flow. Bound.-Layer Meteor., 3 , 255263.

  • Deacon, E. L., 1949: Vertical diffusion in the lowest layers of the atmosphere. Quart. J. Roy. Meteor. Soc., 75 , 89103.

  • Denmead, O. T., and E. F. Bradley, 1985: Flux-gradient relationships in a forest canopy. The Forest-Atmosphere Interaction, B. A. Hutchison and B. B. Hicks, Eds., D. Reidel Publishing, 421–442.

    • Search Google Scholar
    • Export Citation
  • Finnigan, J. J., 1985: Turbulence transport in flexible plant canopies. The Forest-Atmosphere Interaction, B. A. Hutchison and B. B. Hicks, Eds., D. Reidel Publishing, 443–480.

    • Search Google Scholar
    • Export Citation
  • Finnigan, J. J., 2000: Turbulence in plant canopies. Annu. Rev. Fluid Mech., 32 , 519571.

  • Fischenich, J. C., 1996: Velocity and resistance in densely vegetated floodways. Ph.D. thesis, Colorado State University, 203 pp.

  • Fons, R. G., 1940: Influence of forest cover on wind velocity. J. For., 38 , 481486.

  • Grant, R. H., 1983: The scaling of flow in vegetative structures. Bound.-Layer Meteor., 27 , 171184.

  • Inoue, E., 1963: On the turbulent structure of air flow within crop canopies. J. Meteor. Soc. Japan, 41 , 317326.

  • Jackson, P. S., 1981: On the displacement height in the logarithmic velocity profile. J. Fluid Mech., 111 , 1525.

  • Katul, G. G., and J. D. Albertson, 1998: An investigation of higher-order closure models for a forested canopy. Bound.-Layer Meteor., 89 , 4774.

    • Search Google Scholar
    • Export Citation
  • Katul, G. G., and W. H. Chang, 1999: Principal length scales in second-order closure models for canopy turbulence. J. Appl. Meteor., 38 , 16311643.

    • Search Google Scholar
    • Export Citation
  • Katul, G. G., L. Mahrt, D. Poggi, and C. Sanz, 2004: One- and two-equation models for canopy turbulence. Bound.-Layer Meteor., 113 , 81109.

    • Search Google Scholar
    • Export Citation
  • Kelliher, F. M., and Coauthors, 1998: Evaporation from a central Siberian pine forest. J. Hydrol., 205 , 279296.

  • Kelliher, F. M., and Coauthors, 1999: Carbon dioxide efflux density from the floor of a central Siberian pine forest. Agric. For. Meteor., 94 , 217232.

    • Search Google Scholar
    • Export Citation
  • Lalic, B., and D. T. Mihailovic, 2002: A new approach in parameterization of momentum transport inside and above forest canopy under neutral conditions. Integrated Assessment and Decision Support: Proc. First Biennial Meeting of the Int. Environmental Modelling and Software Society, Vol. 2, Lugano, Switzerland, IEMSS, 139–154.

  • Landsberg, J. J., and G. B. James, 1971: Wind profiles in plant canopies: Studies on an analytical model. J. Appl. Ecol., 8 , 729741.

  • Landsberg, J. J., and D. B. B. Powell, 1973: Surface exchange characteristics of leaves subject to mutual interference. Agric. For. Meteor., 12 , 169184.

    • Search Google Scholar
    • Export Citation
  • Legg, B. J., and I. F. Long, 1975: Turbulent diffusion within a wheat canopy: II. Results and interpretation. Quart. J. Roy. Meteor. Soc., 101 , 611628.

    • Search Google Scholar
    • Export Citation
  • Lemon, E., L. H. Allen, and L. Muller, 1970: Carbon dioxide exchange of a tropical rain forest. 2. BioScience, 20 , 10541059.

  • Macdonald, R. W., 2000: Modelling the mean velocity profile in the urban canopy layer. Bound.-Layer Meteor., 97 , 2545.

  • Maheshwari, B. L., 1992: Suitability of different flow equations and hydraulic resistance parameters for flows in surface irrigation: A review. Water Resour. Res., 28 , 20592066.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., X. Lee, A. Black, H. Neumann, and R. M. Staebler, 2000: Nocturnal mixing in a forest subcanopy. Agric. For. Meteor., 101 , 6778.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., D. Vickers, J. L. Sun, N. O. Jensen, H. Jorgensen, E. Pardyjak, and H. Fernando, 2001: Determination of the surface drag coefficient. Bound.-Layer Meteor., 99 , 249276.

    • Search Google Scholar
    • Export Citation
  • Massman, W. J., 1987: A comparative study of some mathematical models of the mean wind structure and aerodynamic drag of plant canopies. Bound.-Layer Meteor., 40 , 179197.

    • Search Google Scholar
    • Export Citation
  • Massman, W. J., 1997: An analytical one-dimensional model of momentum transfer by vegetation of arbitrary structure. Bound.-Layer Meteor., 83 , 407421.

    • Search Google Scholar
    • Export Citation
  • Massman, W. J., and J. C. Weil, 1999: An analytical one-dimensional second-order closure model of turbulence statistics and the Lagrangian time scale within and above plant canopies of arbitrary structure. Bound.-Layer Meteor., 91 , 81107.

    • Search Google Scholar
    • Export Citation
  • Meyers, T., and K. T. Paw U, 1986: Testing of a higher-order closure model for modeling airflow within and above plant canopies. Bound.-Layer Meteor., 37 , 297311.

    • Search Google Scholar
    • Export Citation
  • Mohan, M., and M. K. Tiwari, 2004: Study of momentum transfer within a vegetation canopy. Proc. Indian Acad. Sci., Earth Planet. Sci., 113 , 6772.

    • Search Google Scholar
    • Export Citation
  • Monteith, J. L., and M. H. Unsworth, 1990: Principles of Environmental Physics. 2nd ed. Edward Arnold, 291 pp.

  • Murota, A., T. Fukuhara, and M. Sato, 1984: Turbulence structure in vegetated open channel flows. J. Hydrosci. Hydraul. Eng., 2 , 4761.

    • Search Google Scholar
    • Export Citation
  • Novak, M. D., J. S. Warland, A. L. Orchansky, R. Ketler, and S. Green, 2000: Wind tunnel and field measurements of turbulent flow in forests. Part I: Uniformly thinned stands. Bound.-Layer Meteor., 95 , 457495.

    • Search Google Scholar
    • Export Citation
  • Obukhov, A. M., and A. S. Monin, 1953: Dimensionless characteristics of turbulence in the atmospheric surface layer. Dokl. Akad. Nauk SSSR, 93 , 223226.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1987: Boundary Layer Climates. 2nd ed. Methuen, 435 pp.

  • Oliver, H. R., 1971: Wind profiles in and above a forest canopy. Quart. J. Roy. Meteor. Soc., 97 , 548.

  • Pinard, J., and J. D. Wilson, 2001: First- and second-order closure models for wind in a plant canopy. J. Appl. Meteor., 40 , 17621768.

    • Search Google Scholar
    • Export Citation
  • Poggi, D., A. Porporato, L. Ridolfi, J. D. Albertson, and G. G. Katul, 2004a: The effect of vegetation density on canopy sub-layer turbulence. Bound.-Layer Meteor., 111 , 565587.

    • Search Google Scholar
    • Export Citation
  • Poggi, D., G. G. Katul, and J. D. Albertson, 2004b: A note on the contribution of dispersive fluxes to momentum transfer within canopies. Bound.-Layer Meteor., 111 , 615621.

    • Search Google Scholar
    • Export Citation
  • Prandtl, L., 1925: Uber die ausgebildete turbulenz. Z. Angew. Math. Mech., 5 , 136139.

  • Raupach, M. R., 1992: Drag and drag partition on rough surfaces. Bound.-Layer Meteor., 60 , 375395.

  • Raupach, M. R., and A. S. Thom, 1981: Turbulence in and above plant canopies. Annu. Rev. Fluid Mech., 13 , 97129.

  • Raupach, M. R., and R. H. Shaw, 1982: Averaging procedures for flow within vegetation canopies. Bound.-Layer Meteor., 22 , 7990.

  • Raupach, M. R., P. A. Coppin, and B. J. Legg, 1986: Experiments on scalar dispersion within a model plant canopy. Part I: The turbulence structure. Bound.-Layer Meteor., 35 , 2152.

    • Search Google Scholar
    • Export Citation
  • Schimel, D. S., and Coauthors, 2001: Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 414 , 169172.

    • Search Google Scholar
    • Export Citation
  • Schlichting, H., 1960: Boundary Layer Theory. 4th ed. McGraw-Hill, 647 pp.

  • Schuepp, P. H., 1984: Observations on the use of analytical and numerical models for the description of transfer to porous surface vegetation such as lichen. Bound.-Layer Meteor., 29 , 5973.

    • Search Google Scholar
    • Export Citation
  • Shaw, R. H., 1977: Secondary wind speed maxima inside plant canopies. J. Appl. Meteor., 16 , 514521.

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 670 pp.

  • Sutcliffe, R. C., 1936: Surface resistance in atmospheric flow. Quart. J. Roy. Meteor. Soc., 62 , 312.

  • Sutton, O. G., 1953: Micrometeorology. : A Study of Physical Processes in the Lowest Layers of the Earth’s Atmosphere. McGraw-Hill, 333 pp.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1916: Skin friction of the wind on the earth’s surface. Proc. Roy. Soc. London, 92 , 196199.

  • Thom, A. S., 1968: Exchange of momentum, mass, and heat between an artificial leaf and the airflow in a wind-tunnel. Quart. J. Roy. Meteor. Soc., 94 , 4455.

    • Search Google Scholar
    • Export Citation
  • Thom, A. S., 1971: Momentum absorption by vegetation. Quart. J. Roy. Meteor. Soc., 97 , 414.

  • Turnipseed, A. A., D. E. Anderson, P. D. Blanken, W. M. Baugh, and R. K. Monson, 2003: Airflows and turbulent flux measurements in mountainous terrain. Part 1: Canopy and local effects. Agric. For. Meteor., 119 , 121.

    • Search Google Scholar
    • Export Citation
  • Uchijima, Z., and J. Wright, 1964: An experimental study of air flow in a corn plant-air layer. Bull. Natl. Inst. Agric. Sci., Ser. A,, 11 , 1966.

    • Search Google Scholar
    • Export Citation
  • Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger, and D. G. Tilman, 1997: Human alteration of the global nitrogen cycle: Sources and consequences. Ecol. Appl., 7 , 737750.

    • Search Google Scholar
    • Export Citation
  • von Kármán, T., 1930: Mechanische ähnlichkeit and yurbulenz. Nachr. Ges. Wiss. Göettingen Math. Phys. Kl., 68 , 5876.

  • Wilson, J. D., 1982: Turbulent dispersion in the atmospheric surface layer. Bound.-Layer Meteor., 22 , 399420.

  • Wilson, J. D., 1988: A 2nd-order closure model for flow through vegetation. Bound.-Layer Meteor., 42 , 371392.

  • Wilson, N. R., and R. H. Shaw, 1977: Higher-order closure model for canopy flow. J. Appl. Meteor., 16 , 11971205.

  • Wofsy, S. C., 2001: Where has all the carbon gone? Science, 292 , 22612263.

  • Wyngaard, J. L., 1973: On surface-layer turbulence. Workshop on Micrometeorology, D. A. Haugen, Ed., Amer. Meteor. Soc., 101–149.

  • Yi, C., R. K. Monson, Z. Zhai, D. E. Anderson, B. Lamb, G. Allwine, A. A. Turnipseed, and S. P. Burns, 2005: Modeling and measuring the nocturnal drainage flow in a high-elevation, subalpine forest with complex terrain. J. Geophys. Res., 110 .D22303, doi:10.1029/2005JD006282.

    • Search Google Scholar
    • Export Citation
  • Yi, C., D. E. Anderson, A. A. Turnipseed, S. P. Burns, J. Sparks, D. Stannard, and K. R. Monson, 2008: The contribution of advective fluxes to net ecosystem CO2 exchange in a high-elevation, subalpine forest ecosystem. Ecol. Appl., in press.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 40 40 40
PDF Downloads 4 4 4

Momentum Transfer within Canopies

View More View Less
  • 1 Queens College, City University of New York, Flushing, New York
Restricted access

Abstract

To understand the basic characteristics of the observed S-shaped wind profile and the exponential flux profile within forest canopies, three hypotheses are postulated. The relationship between these fundamental profiles is well established by combining the postulated hypotheses with momentum equations. Robust agreements between theoretical predictions and observations indicate that the nature of momentum transfer within canopies can be well understood by combining the postulated hypotheses and momentum equations. The exponential Reynolds stress profiles were successfully predicted by the leaf area index (LAI) profile alone. The characteristics of the S-shaped wind profile were theoretically explained by the plant morphology and local drag coefficient distribution. Predictions of maximum drag coefficient were located around the maximum leaf area level for most forest canopies but lower than the maximum leaf area level for a corn canopy. A universal relationship of the Reynolds stress between the top and bottom of the canopy is predicted for all canopies. This universal relationship can be used to understand what percentage of the Reynolds stress at the top of canopy is absorbed by the whole canopy layer from the observed LAI values alone. All of these predictions are consistent with the conclusions from dimensional analysis and satisfy the continuity requirement of Reynolds stress, mean wind speed, and local drag coefficient at the top of canopy.

Corresponding author address: Chuixiang Yi, School of Earth and Environmental Sciences, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367. Email: cyi@qc.cuny.edu

Abstract

To understand the basic characteristics of the observed S-shaped wind profile and the exponential flux profile within forest canopies, three hypotheses are postulated. The relationship between these fundamental profiles is well established by combining the postulated hypotheses with momentum equations. Robust agreements between theoretical predictions and observations indicate that the nature of momentum transfer within canopies can be well understood by combining the postulated hypotheses and momentum equations. The exponential Reynolds stress profiles were successfully predicted by the leaf area index (LAI) profile alone. The characteristics of the S-shaped wind profile were theoretically explained by the plant morphology and local drag coefficient distribution. Predictions of maximum drag coefficient were located around the maximum leaf area level for most forest canopies but lower than the maximum leaf area level for a corn canopy. A universal relationship of the Reynolds stress between the top and bottom of the canopy is predicted for all canopies. This universal relationship can be used to understand what percentage of the Reynolds stress at the top of canopy is absorbed by the whole canopy layer from the observed LAI values alone. All of these predictions are consistent with the conclusions from dimensional analysis and satisfy the continuity requirement of Reynolds stress, mean wind speed, and local drag coefficient at the top of canopy.

Corresponding author address: Chuixiang Yi, School of Earth and Environmental Sciences, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367. Email: cyi@qc.cuny.edu

Save