• Bounoua, L., R. DeFries, G. J. Collatz, P. Sellers, and H. Khan, 2002: Effects of land cover conversion on surface climate. Climatic Change, 52 , 2964.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and J. Shukla, 1994: Albedo as a modulator of climate response to tropical deforestation. J. Geophys. Res., 99 , 2086320878.

    • Search Google Scholar
    • Export Citation
  • Dubovik, O., A. Smirnov, B. N. Holben, M. D. King, Y. J. Kaufman, T. F. Eck, and I. Slutsker, 2000: Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) sun and sky radiance measurements. J. Geophys. Res., 105 , 97919806.

    • Search Google Scholar
    • Export Citation
  • Friedl, M. A., and Coauthors, 2002: Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ., 83 , 287302.

    • Search Google Scholar
    • Export Citation
  • Holben, B. N., and Coauthors, 1998: AERONET—A federated instrument network and data archive for aerosol characterization: An overview. Remote Sens. Environ., 66 , 116.

    • Search Google Scholar
    • Export Citation
  • Hsu, N. C., S-C. Tsay, M. D. King, and J. R. Herman, 2004: Aerosol properties over bright-reflecting source regions. IEEE Trans. Geosci. Remote Sens., 42 , 557569.

    • Search Google Scholar
    • Export Citation
  • Hsu, N. C., S-C. Tsay, M. D. King, and J. R. Herman, 2006: Deep blue retrievals of Asian aerosol properties during ACE-Asia. IEEE Trans. Geosci. Remote Sens., 44 , 31803195.

    • Search Google Scholar
    • Export Citation
  • Ingram, W. J., C. A. Wilson, and J. F. B. Mitchell, 1989: Modeling climate change: An assessment of sea ice and surface albedo feedbacks. J. Geophys. Res., 94 , 86098622.

    • Search Google Scholar
    • Export Citation
  • Jin, Y., C. B. Schaaf, F. Gao, X. Li, A. H. Strahler, W. Lucht, and S. Liang, 2003a: Consistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals: 1. Algorithm performance. J. Geophys. Res., 108 .4158, doi:10.1029/2002JD002803.

    • Search Google Scholar
    • Export Citation
  • Jin, Y., C. B. Schaaf, C. E. Woodcock, F. Gao, X. Li, A. H. Strahler, W. Lucht, and S. Liang, 2003b: Consistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals: 2. Validation. J. Geophys. Res., 108 .4159, doi:10.1029/2002JD002804.

    • Search Google Scholar
    • Export Citation
  • Kaduk, J., and M. Heimann, 1996: A prognostic phenology scheme for global terrestrial carbon cycle models. Climate Res., 6 , 119.

  • Kaufman, Y. J., D. Tanré, L. A. Remer, E. F. Vermote, A. Chu, and B. N. Holben, 1997: Operational remote sensing of tropospheric aerosol over land from EOS Moderate Resolution Imaging Spectroradiometer. J. Geophys. Res., 102 , 1705117067.

    • Search Google Scholar
    • Export Citation
  • King, M. D., and D. D. Herring, 2000: Monitoring Earth’s vital signs. Sci. Amer., 282 , 7277.

  • King, M. D., Y. J. Kaufman, W. P. Menzel, and D. Tanré, 1992: Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS). IEEE Trans. Geosci. Remote Sens., 30 , 227.

    • Search Google Scholar
    • Export Citation
  • King, M. D., Y. J. Kaufman, D. Tanré, and T. Nakajima, 1999: Remote sensing of tropospheric aerosols from space: Past, present, and future. Bull. Amer. Meteor. Soc., 80 , 22292259.

    • Search Google Scholar
    • Export Citation
  • King, M. D., and Coauthors, 2003: Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS. IEEE Trans. Geosci. Remote Sens., 41 , 442458.

    • Search Google Scholar
    • Export Citation
  • King, M. D., S. Platnick, P. Yang, G. T. Arnold, M. A. Gray, J. C. Riedi, S. A. Ackerman, and K. N. Liou, 2004: Remote sensing of liquid water and ice cloud optical thickness and effective radius in the Arctic: Application of airborne multispectral MAS data. J. Atmos. Oceanic Technol., 21 , 857875.

    • Search Google Scholar
    • Export Citation
  • Liang, S. L., and Coauthors, 2002: Validating MODIS land surface reflectance and albedo products: Methods and preliminary results. Remote Sens. Environ., 83 , 149162.

    • Search Google Scholar
    • Export Citation
  • Marshak, A., S. Platnick, T. Varnai, G. Wen, and R. F. Cahalan, 2006: Impact of three-dimensional radiative effects on satellite retrievals of cloud droplet sizes. J. Geophys. Res., 111 .D09207, doi:10.1029/2005JD006686.

    • Search Google Scholar
    • Export Citation
  • Matsui, T., A. Beltran-Przekurat, R. A. Pielke Sr., D. Niyogi, and M. Coughenour, 2007: Continental-scale multiobservation calibration and assessment of Colorado State University Unified Land Model by application of Moderate Resolution Imaging Spectroradiometer (MODIS) surface albedo. J. Geophys. Res., 112 .G02028, doi:10.1029/2006JG000229.

    • Search Google Scholar
    • Export Citation
  • Moody, E. G., M. D. King, S. Platnick, C. B. Schaaf, and F. Gao, 2005: Spatially complete global spectral surface albedos: Value-added datasets derived from Terra MODIS land products. IEEE Trans. Geosci. Remote Sens., 43 , 144158.

    • Search Google Scholar
    • Export Citation
  • Penuelas, J., and Coauthors, 2004: Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytol., 161 , 837846.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riédi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41 , 459473.

    • Search Google Scholar
    • Export Citation
  • Ramon, D., and R. Santer, 2005: Aerosol over land with MERIS, present and future. Proc. MERIS–AATSR Workshop (ESA SP-597), Frascati, Italy, ESRIN, 9.1.

  • Reed, B. C., J. F. Brown, D. VanderZee, T. R. Loveland, J. W. Merchant, and D. O. Ohlen, 1994: Measuring phenological variability from satellite imagery. J. Veg. Sci., 5 , 703714.

    • Search Google Scholar
    • Export Citation
  • Roy, D. P., P. Lewis, C. B. Schaaf, S. Devadiga, and L. Boschetti, 2006: The global impact of clouds on the production of MODIS bidirectional reflectance model-based composites for terrestrial monitoring. IEEE Geosci. Remote Sens. Lett., 3 , 452456.

    • Search Google Scholar
    • Export Citation
  • Schaaf, C. B., and Coauthors, 2002: First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ., 83 , 135148.

    • Search Google Scholar
    • Export Citation
  • Schwartz, M. D., 1998: Green-wave phenology. Nature, 394 , 839840.

  • Schwartz, M. D., and B. C. Reed, 1999: Surface phenology and satellite sensor-derived onset of greenness: An initial comparison. Int. J. Remote Sens., 20 , 34513457.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., D. A. Randall, G. J. Collatz, J. A. Berry, C. B. Field, D. A. Dazlich, C. Zhang, and L. Bounoua, 1996: A revised land surface parameterization (SiB2) for atmospheric GCMs. Part 1: Model formulation. J. Climate, 9 , 676705.

    • Search Google Scholar
    • Export Citation
  • Tegen, I., B. Heinold, M. Todd, J. Helmert, R. Washington, and O. Dubovik, 2006: Modelling soil dust aerosol in the Bodélé depressions during the BoDEx campaign. Atmos. Chem. Phys., 6 , 43454359.

    • Search Google Scholar
    • Export Citation
  • Wang, K., J. Liu, X. Zhou, M. Sparrow, M. Ma, Z. Sun, and W. Jiang, 2004: Validation of the MODIS global land surface albedo product using ground measurements in a semidesert region on the Tibetan Plateau. J. Geophys. Res., 109 .D05107, doi:10.1029/2003JD004229.

    • Search Google Scholar
    • Export Citation
  • Wen, G., A. Marshak, and R. F. Cahalan, 2006: Impact of 3-D clouds on clear-sky reflectance and aerosol retrieval in a biomass burning region of Brazil. Geosci. Remote Sens. Lett., 3 , 169172.

    • Search Google Scholar
    • Export Citation
  • White, M. A., P. E. Thornton, and S. W. Running, 1997: A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochem. Cycles, 11 , 217234.

    • Search Google Scholar
    • Export Citation
  • Whitlock, C. H., and Coauthors, 1995: First global WCRP shortwave surface radiation budget dataset. Bull. Amer. Meteor. Soc., 76 , 905922.

    • Search Google Scholar
    • Export Citation
  • Yu, H., and Coauthors, 2006: A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmos. Chem. Phys., 6 , 613666.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., M. A. Friedl, C. B. Schaaf, A. H. Strahler, J. C. F. Hodges, F. Gao, B. C. Reed, and A. Huete, 2003: Monitoring vegetation phenology using MODIS. Remote Sens. Environ., 84 , 471475.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. B. Rossow, and P. W. Stackhouse Jr., 2007: Comparison of different global information sources used in surface radiative flux calculation: Radiative properties of the surface. J. Geophys. Res., 112 .D01102, doi:10.1029/2005JD007008.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 224 121 13
PDF Downloads 151 92 19

MODIS-Derived Spatially Complete Surface Albedo Products: Spatial and Temporal Pixel Distribution and Zonal Averages

View More View Less
  • 1 RS Information Systems, Inc., Lanham, Maryland
  • | 2 Earth Sciences Division, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 3 Center for Remote Sensing, Department of Geography, Boston University, Boston, Massachusetts
  • | 4 Earth Sciences Division, NASA Goddard Space Flight Center, Greenbelt, Maryland
Restricted access

Abstract

Five years (2000–04) of spatially complete snow-free land surface albedo data have been produced using high-quality-flagged diffuse bihemispherical (white sky) and direct-beam directional hemispherical (black sky) land surface albedo data derived from observations taken by the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument aboard the NASA Terra satellite platform (MOD43B3, collection 4). In addition, a spatially complete snow-free aggregate albedo climatological product was generated. These spatially complete products were prepared using an ecosystem-dependent temporal interpolation technique that retrieves missing data within 3%–8% error. These datasets have already been integrated into research and operational projects that require snow-free land surface albedo. As such, this paper provides details regarding the spatial and temporal distribution of the filled versus the original MOD43B3 data. The paper also explores the intra- and interannual variation in the 5-yr data record and provides a qualitative comparison of zonal averages and annual cycles of the filled versus the original MOD43B3 data. The analyses emphasize the data’s inter- and intraannual variation and show that the filled data exhibit large- and small-scale phenological behavior that is qualitatively similar to that of the original MOD43B3. These analyses thereby serve to showcase the inherent spectral, spatial, and temporal variability in the MOD43B3 data as well as the ability of the fill technique to preserve these unique regional and pixel-level phenological characteristics.

* Current affiliation: Wyle Information Systems, McLean, Virginia.

Corresponding author address: Eric G. Moody, Wyle Information Systems, 1651 Old Meadow Rd., McLean, VA 22102. Email: eric.g.moody@gmail.com

Abstract

Five years (2000–04) of spatially complete snow-free land surface albedo data have been produced using high-quality-flagged diffuse bihemispherical (white sky) and direct-beam directional hemispherical (black sky) land surface albedo data derived from observations taken by the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument aboard the NASA Terra satellite platform (MOD43B3, collection 4). In addition, a spatially complete snow-free aggregate albedo climatological product was generated. These spatially complete products were prepared using an ecosystem-dependent temporal interpolation technique that retrieves missing data within 3%–8% error. These datasets have already been integrated into research and operational projects that require snow-free land surface albedo. As such, this paper provides details regarding the spatial and temporal distribution of the filled versus the original MOD43B3 data. The paper also explores the intra- and interannual variation in the 5-yr data record and provides a qualitative comparison of zonal averages and annual cycles of the filled versus the original MOD43B3 data. The analyses emphasize the data’s inter- and intraannual variation and show that the filled data exhibit large- and small-scale phenological behavior that is qualitatively similar to that of the original MOD43B3. These analyses thereby serve to showcase the inherent spectral, spatial, and temporal variability in the MOD43B3 data as well as the ability of the fill technique to preserve these unique regional and pixel-level phenological characteristics.

* Current affiliation: Wyle Information Systems, McLean, Virginia.

Corresponding author address: Eric G. Moody, Wyle Information Systems, 1651 Old Meadow Rd., McLean, VA 22102. Email: eric.g.moody@gmail.com

Save