• Ackerman, T., and G. M. Stokes, 2003: The Atmospheric Radiation Measurement Program. Phys. Today, 56 , 3845.

  • Augustine, J. A., J. J. DeLuisi, and C. N. Long, 2000: SURFRAD—A national surface radiation budget network for atmospheric research. Bull. Amer. Meteor. Soc., 81 , 23412357.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., J. Ritchie, J. Foat, and G. Stokes, 1998: On the space–time scales of the surface solar radiation field. J. Climate, 11 , 8896.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 1996: A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and user’s guide. NCAR Tech. Note NCAR/TN-4171STR, 150 pp.

  • Briegleb, B. P., 1992: Delta-Eddington approximation for solar radiation in the NCAR Community Climate Model. J. Geophys. Res., 97 , 76037612.

    • Search Google Scholar
    • Export Citation
  • Briegleb, B. P., P. Minnis, V. Ramanathan, and E. Harrison, 1986: Comparison of regional clear-sky albedos inferred from satellite observations and models comparisons. J. Climate Appl. Meteor., 25 , 214226.

    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., and Coauthors, 2001: The ARM Millimeter Wave Cloud Radars (MMCRs) and the Active Remote Sensing of Clouds (ARSCL) Value Added Product (VAP). DOE Tech. Memo. ARM VAP-002.1, U.S. Department of Energy, Washington, DC, 56 pp.

  • Dai, Y., and Coauthors, 2003: The Common Land Model. Bull. Amer. Meteor. Soc., 84 , 10131023.

  • Dai, Y., R. E. Dickinson, and Y-P. Wang, 2004: A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance. J. Climate, 17 , 22812299.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., 1983: Land surface processes and climate-surface albedos and energy balance. Advances in Geophysics, Vol. 25, Academic Press, 305–353.

    • Search Google Scholar
    • Export Citation
  • Hou, Y-T., S. Moorthi, and K. A. Campana, 2002: Parameterization of solar radiation transfer in the NCEP models. NCEP Office Note 441, 34 pp.

  • Jin, Y., C. B. Schaaf, C. E. Woodstock, F. Gao, X. Li, A. H. Strahler, W. Lucht, and S. Liang, 2003: Consistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals: 2. Validation. J. Geophys. Res., 108 .4159, doi:10.1029/2002JD002804.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. J. Suarez, A. Ducharne, M. Stieglitz, and P. Kumar, 2000: A catchment-based approach to modeling land surface processes in a GCM, Part 1, Model structure. J. Geophys. Res., 105 , 2480924822.

    • Search Google Scholar
    • Export Citation
  • Liang, X-Z., and Coauthors, 2005: Development of land surface albedo parameterization based on Moderate Resolution Imaging Spectroradiometer (MODIS) data. J. Geophys. Res., 110 .D11107, doi:10.1029/2004JD005579.

    • Search Google Scholar
    • Export Citation
  • Long, C. N., and T. P. Ackerman, 1997: Detection of clear skies using total and diffuse shortwave irradiance: Calculations of shortwave cloud forcing and clear sky diffuse ratio. Proc. Sixth Atmospheric Radiation Measurement (ARM) Science Team Meeting, CONF–9603149, Washington, DC, U.S. Department of Energy, 179–183.

  • Long, C. N., T. P. Ackerman, and J. E. Christy, 2002: Variability across the ARM SGP area by temporal and spatial scale. Proc. 12th ARM Science Team Meeting, St. Petersburg, FL, U.S. Department of Energy, 1–16.

  • Lucht, W., C. B. Schaaf, and A. H. Strahler, 2000: An algorithm for the retrieval of albedo from space using semiempirical BRDF models. IEEE Trans. Geosci. Remote Sens., 38 , 977998.

    • Search Google Scholar
    • Export Citation
  • Lyapustin, A., 1999: Atmospheric and geometrical effects on land surface albedo. J. Geophys. Res., 104 , 41274144.

  • Matthews, E., 1983: Global vegetation and land use: New high-resolution data bases for climate studies. J. Climate Appl. Meteor., 22 , 474487.

    • Search Google Scholar
    • Export Citation
  • Matthews, E., 1984: Vegetation, land-use, and seasonal albedo data sets: Documentation of archived data tape. NASA Tech. Memo. 86107, Washington, DC, 20 pp.

  • Minnis, P., S. Mayor, W. L. Smith Jr., and D. F. Young, 1997: Asymmetry in the diurnal variation of surface albedo. IEEE Trans. Geosci. Remote Sens., 35 , 879891.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J. J., 2002: The surface downward longwave radiation in the ECMWF forecast system. J. Climate, 15 , 18751892.

  • Oleson, K. W., and Coauthors, 2004: Technical description of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-461+STR, 174 pp.

  • Pinty, B., and Coauthors, 2005: Coupling diffuse sky radiation and surface albedo. J. Atmos. Sci., 62 , 25802591.

  • Roesch, A., C. Schaaf, and F. Gao, 2004: Use of Moderate-Resolution Imaging Spectroradiometer bidirectional reflectance distribution function products to enhance simulated surface albedos. J. Geophys. Res., 109 .D12105, doi:10.1029/2004JD004552.

    • Search Google Scholar
    • Export Citation
  • Schaaf, C. B., and Coauthors, 2002: First operational BRDF, albedo and nadir reflectance products from MODIS. Remote Sens. Environ., 83 , 135148.

    • Search Google Scholar
    • Export Citation
  • Shi, Y., and C. N. Long, 2002: Best estimate radiation flux value added procedure: Algorithm operational details and explanations. DOE Tech. Memo. ARM-TR-008, U.S. Department of Energy, Washington, DC, 55 pp.

  • Stokes, G. M., and S. E. Schwartz, 1994: The Atmospheric Radiation Measurement (ARM) Program: Programmatic background and design of the cloud and radiation test bed. Bull. Amer. Meteor. Soc., 75 , 12011221.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., X. Zeng, M. Barlage, R. E. Dickinson, F. Gao, and C. B. Schaaf, 2004: Using MODIS BRDF/albedo data to evaluate global model land surface albedo. J. Hydrometeor., 5 , 314.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., M. Barlage, X. Zeng, R. E. Dickinson, and C. B. Schaaf, 2005: The solar zenith angle dependence of desert albedo. Geophys. Res. Lett., 32 .L05403, doi:10.1029/2004GL021835.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., X. Zeng, and M. Barlage, 2007: Moderate Resolution Imaging Spectroradiometer bidirectional reflectance distribution function– based albedo parameterization for weather and climate models. J. Geophys. Res., 112 .D02103, doi:10.1029/2005JD006736.

    • Search Google Scholar
    • Export Citation
  • Yang, F., H-L. Pan, S. Krueger, S. Moorthi, and S. Lord, 2006: Evaluation of the NCEP Global Forecast System at the ARM SGP site. Mon. Wea. Rev., 134 , 36683690.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 849 389 12
PDF Downloads 659 317 11

Dependence of Land Surface Albedo on Solar Zenith Angle: Observations and Model Parameterization

View More View Less
  • 1 Science Applications International Corporation, and NCEP Environmental Modeling Center, Camp Springs, Maryland
  • | 2 NCEP Environmental Modeling Center, Camp Springs, Maryland
  • | 3 State Key Laboratory of Remote Sensing Science, School of Geography, Beijing Normal University, Beijing, China
  • | 4 Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona
  • | 5 Illinois State Water Survey, Department of Natural Resources, University of Illinois at Urbana–Champaign, Urbana, Illinois
Restricted access

Abstract

This study examines the dependence of surface albedo on solar zenith angle (SZA) over snow-free land surfaces using the intensive observations of surface shortwave fluxes made by the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program and the National Oceanic and Atmospheric Administration Surface Radiation Budget Network (SURFRAD) in 1997–2005. Results are used to evaluate the National Centers for Environmental Prediction (NCEP) Global Forecast Systems (GFS) parameterization and several new parameterizations derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) products. The influence of clouds on surface albedo and the albedo difference between morning and afternoon observations are also investigated. A new approach is taken to partition the observed upward flux so that the direct-beam and diffuse albedos can be separately computed. The study focused first on the ARM Southern Great Plains Central Facility site. It is found that the diffuse albedo prescribed in the NCEP GFS matched closely with the observations. The direct-beam albedo parameterized in the GFS is largely underestimated at all SZAs. The parameterizations derived from the MODIS product underestimated the direct-beam albedo at large SZAs and slightly overestimated it at small SZAs. Similar results are obtained from the analyses of observations at other stations. It is also found that the morning and afternoon dependencies of direct-beam albedo on SZA differ among the stations. Attempts are made to improve numerical model algorithms that parameterize the direct-beam albedo as a product of the direct-beam albedo at SZA = 60° (or the diffuse albedo), which varies with surface type or geographical location and/or season, and a function that depends only on SZA. A method is presented for computing the direct-beam albedos over these snow-free land points without referring to a particular land-cover classification scheme, which often differs from model to model.

Corresponding author address: Fanglin Yang, NCEP/EMC, 5200 Auth Road, Camp Springs, MD 20746. Email: fanglin.yang@noaa.gov

Abstract

This study examines the dependence of surface albedo on solar zenith angle (SZA) over snow-free land surfaces using the intensive observations of surface shortwave fluxes made by the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program and the National Oceanic and Atmospheric Administration Surface Radiation Budget Network (SURFRAD) in 1997–2005. Results are used to evaluate the National Centers for Environmental Prediction (NCEP) Global Forecast Systems (GFS) parameterization and several new parameterizations derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) products. The influence of clouds on surface albedo and the albedo difference between morning and afternoon observations are also investigated. A new approach is taken to partition the observed upward flux so that the direct-beam and diffuse albedos can be separately computed. The study focused first on the ARM Southern Great Plains Central Facility site. It is found that the diffuse albedo prescribed in the NCEP GFS matched closely with the observations. The direct-beam albedo parameterized in the GFS is largely underestimated at all SZAs. The parameterizations derived from the MODIS product underestimated the direct-beam albedo at large SZAs and slightly overestimated it at small SZAs. Similar results are obtained from the analyses of observations at other stations. It is also found that the morning and afternoon dependencies of direct-beam albedo on SZA differ among the stations. Attempts are made to improve numerical model algorithms that parameterize the direct-beam albedo as a product of the direct-beam albedo at SZA = 60° (or the diffuse albedo), which varies with surface type or geographical location and/or season, and a function that depends only on SZA. A method is presented for computing the direct-beam albedos over these snow-free land points without referring to a particular land-cover classification scheme, which often differs from model to model.

Corresponding author address: Fanglin Yang, NCEP/EMC, 5200 Auth Road, Camp Springs, MD 20746. Email: fanglin.yang@noaa.gov

Save