• Allwine, K. J., and J. E. Flaherty, 2006: Joint Urban 2003: Study overview and instrument locations. PNNL-15967, Pacific Northwest National Laboratory, Richland, WA, 92 pp.

  • Allwine, K. J., and J. E. Flaherty, 2007: Urban Dispersion Program overview and MID05 field study summary. PNNL-16696, Pacific Northwest National Laboratory, Richland, WA, 63 pp.

  • Allwine, K. J., B. K. Lamb, and R. Eskridge, 1992: Wintertime dispersion in a mountain basin at Roanoke, Virginia: Tracer study. J. Appl. Meteor., 31 , 12951311.

    • Search Google Scholar
    • Export Citation
  • Allwine, K. J., J. H. Shinn, G. E. Streit, K. L. Clawson, and M. Brown, 2002: Overview of URBAN 2000: A multiscale field study of dispersion through an urban environment. Bull. Amer. Meteor. Soc., 83 , 521536.

    • Search Google Scholar
    • Export Citation
  • Allwine, K. J., M. J. Leach, L. W. Stockham, J. S. Shinn, R. P. Hosker, J. F. Bowers, and J. C. Pace, 2004: Overview of Joint Urban 2003—An atmospheric dispersion study in Oklahoma City. Preprints, Symp. on Planning, Nowcasting, and Forecasting in the Urban Zone and Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, Amer. Meteor. Soc., J7.1. [Available online at http://ams.confex.com/ams/pdfpapers/74349.pdf.].

  • Allwine, K. J., K. L. Clawson, J. E. Flaherty, J. H. Heiser, R. P. Hosker, M. J. Leach, and L. W. Stockham, 2007: Urban Dispersion Program: Urban measurements applied to emergency response. Preprints, Seventh Symp. on the Urban Environment, San Diego, CA, Amer. Meteor. Soc., 7.2. [Available online at http://ams.confex.com/ams/pdfpapers/127257.pdf.].

  • Banta, R. M., L. S. Darby, J. D. Fast, J. O. Pinto, C. D. Whiteman, W. J. Shaw, and B. W. Orr, 2004: Nocturnal low-level jet in a mountain basin complex. Part I: Evolution and effects on local flows. J. Appl. Meteor., 43 , 13481365.

    • Search Google Scholar
    • Export Citation
  • Britter, R. E., and S. R. Hanna, 2003: Flow and dispersion in urban areas. Annu. Rev. Fluid Mech., 35 , 469496.

  • Brown, M. J., and G. E. Streit, 1998: Emergency responders’ “rules-of-thumb” for air toxics releases in urban environments. LA-UR-98-4539, Los Alamos National Laboratory, 26 pp.

  • Brown, M. J., H. Khalsa, M. Nelson, and D. Boswell, 2004: Street canyon flow patterns in a horizontal plane: Measurements from the Joint Urban 2003 field experiment. Preprints, Fifth Symp. on the Urban Environment, Vancouver, BC, Canada, Amer. Meteor. Soc., 3.1. [Available online at http://ams.confex.com/ams/pdfpapers/80299.pdf.].

  • Calhoun, R., R. Heap, M. Prinevac, R. Newsom, H. Fernando, and D. Ligon, 2006: Virtual towers using coherent Doppler lidar during the Joint Urban 2003 dispersion experiment. J. Appl. Meteor. Climatol., 45 , 11161126.

    • Search Google Scholar
    • Export Citation
  • Chan, S., and M. J. Leach, 2007: A validation of FEM3MP with Joint Urban 2003 data. J. Appl. Meteor. Climatol., 46 , 21272146.

  • Chang, J. C., S. R. Hanna, Z. Boybeyi, and P. Franzese, 2005: Use of Salt Lake City URBAN 2000 field data to evaluate the urban Hazard Prediction Assessment Capability (HPAC) dispersion model. J. Appl. Meteor., 44 , 485501.

    • Search Google Scholar
    • Export Citation
  • Chen, J., R. Bornstein, and C. G. Lindsey, 1999: Transport of a power plant tracer plume over Grand Canyon National Park. J. Appl. Meteor., 38 , 10491068.

    • Search Google Scholar
    • Export Citation
  • Clawson, K. L., and G. H. Crescenti, 2002: Meteorological measurements during the URBAN 2000/VTMX field study. NOAA Tech. Memo. OAR ARL-243, Air Resources Laboratory, Idaho Falls, ID, 45 pp.

  • Clawson, K. L., and Coauthors, 2004: URBAN 2000 SF6 atmospheric tracer field tests. NOAA Tech. Memo. OAR ARL-253, Air Resources Laboratory, Idaho Falls, ID, 153 pp.

  • Clawson, K. L., and Coauthors, 2005: Joint Urban 2003 (JU03) SF6 atmospheric tracer field tests. NOAA Tech. Memo. OAR ARL-254, Air Resources Laboratory, Idaho Falls, ID, 162 pp.

  • Cooke, K. M., S. Di Sabatino, P. G. Simmonds, G. Nickless, R. E. Britter, and F. Caton, 2000: Tracers and dispersion of gaseous pollutants in an urban area—Birmingham Tracer Experiments. NERC/URGENT Project GST/02/1974, 88 pp.

  • Darby, L. S., K. J. Allwine, and R. M. Banta, 2006: Nocturnal low-level jet in a mountain basin complex. Part II: Transport and diffusion of tracer under stable conditions. J. Appl. Meteor. Climatol., 45 , 740753.

    • Search Google Scholar
    • Export Citation
  • DePaul, F. T., and C. M. Sheih, 1985: A tracer study of dispersion in an urban street canyon. Atmos. Environ., 19 , 555559.

  • Dobre, A., S. J. Arnold, R. J. Smalley, J. W. D. Boddy, J. F. Barlow, A. S. Tomlin, and S. E. Belcher, 2005: Flow field measurements in the proximity of an urban intersection in London, UK. Atmos. Environ., 39 , 46474657.

    • Search Google Scholar
    • Export Citation
  • Doran, J. C., J. D. Fast, and J. Horel, 2002: The VTMX 2000 campaign. Bull. Amer. Meteor. Soc., 83 , 537551.

  • Doran, J. C., K. J. Allwine, J. E. Flaherty, K. L. Clawson, and R. G. Carter, 2007: Characteristics of puff dispersion in an urban environment. Atmos. Environ., 41 , 34403452.

    • Search Google Scholar
    • Export Citation
  • Fast, J. D., and L. S. Darby, 2004: An evaluation of mesoscale model predictions of down-valley and canyon flows and their consequences using Doppler lidar measurements during VTMX 2000. J. Appl. Meteor., 43 , 420436.

    • Search Google Scholar
    • Export Citation
  • Fast, J. D., K. J. Allwine, R. N. Dietz, K. L. Clawson, and J. C. Torcolini, 2006: Dispersion of perfluorocarbon tracers within the Salt Lake Valley during VTMX 2000. J. Appl. Meteor. Climatol., 45 , 793812.

    • Search Google Scholar
    • Export Citation
  • Flaherty, J. E., B. Lamb, K. J. Allwine, and E. Allwine, 2007a: Vertical tracer concentration profiles measured during the Joint Urban 2003 dispersion study. J. Appl. Meteor. Climatol., 46 , 20192037.

    • Search Google Scholar
    • Export Citation
  • Flaherty, J. E., D. Stock, and B. Lamb, 2007b: Computational fluid dynamic simulations of plume dispersion in urban Oklahoma City. J. Appl. Meteor. Climatol., 46 , 21102126.

    • Search Google Scholar
    • Export Citation
  • Gowardhan, A., M. Brown, M. Williams, and E. Pardyjak, 2006: Evaluation of the QUIC urban dispersion model using the Salt Lake City URBAN 2000 tracer experiment data—IOP 10. Preprints, 14th Joint Conf. on the Applications of Air Pollution Meteorology with the Air and Waste Management Association and Sixth Symp. on the Urban Environment, Atlanta, GA, Amer. Meteor. Soc., J6.3. [Available online at http://ams.confex.com/ams/pdfpapers/104237.pdf.].

  • Grimmond, C. S. B., and T. R. Oke, 2002: Turbulent heat fluxes in urban areas: Observations and a local-scale urban meteorological parameterization scheme (LUMPS). J. Appl. Meteor., 41 , 792810.

    • Search Google Scholar
    • Export Citation
  • Gudiksen, P. H., 1984: Field studies of transport and dispersion of atmospheric tracers in nocturnal drainage flows. Atmos. Environ., 18 , 713731.

    • Search Google Scholar
    • Export Citation
  • Hanna, S. R., R. Britter, and P. Franzese, 2003: A baseline urban dispersion model evaluated with Salt Lake City and Los Angeles tracer data. Atmos. Environ., 37 , 50695082.

    • Search Google Scholar
    • Export Citation
  • Hanna, S. R., J. White, and Y. Zhou, 2007: Observed winds, turbulence, and dispersion, in built-up downtown areas of Oklahoma City and Manhattan. Bound.-Layer Meteor., 125 , 441468.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., S. R. Diehl, D. A. Burrows, and R. Keith, 2007: Evaluation of a fast-running urban dispersion modeling system using Joint Urban 2003 field data. J. Appl. Meteor. Climatol., 46 , 21652179.

    • Search Google Scholar
    • Export Citation
  • Hosker, R. P., 1987: The effects of buildings on local dispersion. Modeling the Urban Boundary Layer, M. L. Kramer, Ed., Amer. Meteor. Soc., 95–160.

    • Search Google Scholar
    • Export Citation
  • Huang, H., Y. Akutsu, M. Arai, and M. Tamura, 2000: A two-dimensional air quality model in an urban street canyon: Evaluation and sensitivity analysis. Atmos. Environ., 34 , 689698.

    • Search Google Scholar
    • Export Citation
  • Klein, P., and J. V. Clark, 2007: Flow variability in a North American downtown street canyon. J. Appl. Meteor. Climatol., 46 , 851877.

    • Search Google Scholar
    • Export Citation
  • Lundquist, J. K., and S. T. Chan, 2007: Consequences of urban stability conditions for computational fluid dynamics simulations of urban dispersion. J. Appl. Meteor. Climatol., 46 , 10801097.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., D. Vickers, R. Nakamura, M. R. Soler, J. L. Sun, S. Burns, and D. H. Lenschow, 2001: Shallow drainage flows. Bound.-Layer Meteor., 101 , 243260.

    • Search Google Scholar
    • Export Citation
  • McElroy, J. L., 1969: A comparative study of urban and rural dispersion. J. Appl. Meteor., 8 , 1931.

  • Monti, P., H. J. S. Fernando, M. Princevac, W. C. Chan, T. A. Kowalewski, and E. R. Pardyjak, 2002: Observations of flow and turbulence in the nocturnal boundary layer over a slope. J. Atmos. Sci., 59 , 25132534.

    • Search Google Scholar
    • Export Citation
  • Nelson, M. A., E. R. Pardyjak, J. C. Klewicki, S. U. Pol, and M. J. Brown, 2007a: Properties of the wind field within the Oklahoma City Park Avenue street canyon. Part I: Mean flow and turbulence statistics. J. Appl. Meteor. Climatol., 46 , 20382054.

    • Search Google Scholar
    • Export Citation
  • Nelson, M. A., E. R. Pardyjak, M. J. Brown, and J. C. Klewicki, 2007b: Properties of the wind field within the Oklahoma City Park Avenue street canyon. Part II: Spectra, cospectra, and quadrant analysis. J. Appl. Meteor. Climatol., 46 , 20552073.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1988: Street design and urban canopy layer climate. Energy Bldg., 11 , 103113.

  • Pinto, J. O., D. B. Parsons, W. O. J. Brown, S. Cohn, N. Chamberlain, and B. Morley, 2006: Coevolution of down-valley flow and the nocturnal boundary layer in complex terrain. J. Appl. Meteor. Climatol., 45 , 14291449.

    • Search Google Scholar
    • Export Citation
  • Ramamurthy, R., E. R. Pardyjak, and J. C. Klewicki, 2007: Observations of the effects of atmospheric stability on turbulence statistics deep within an urban street canyon. J. Appl. Meteor. Climatol., 46 , 20742085.

    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., S-E. Gryning, E. Batchvarova, A. Christen, and R. Vogt, 2004: Pollutant dispersion close to an urban surface—BUBBLE tracer experiment. Meteor. Atmos. Phys., 87 , 3956.

    • Search Google Scholar
    • Export Citation
  • Soler, M. R., C. Infante, P. Buenestado, and L. Mahrt, 2002: Observations of nocturnal drainage flow in a shallow gully. Bound.-Layer Meteor., 105 , 253273.

    • Search Google Scholar
    • Export Citation
  • Streit, G. E., E. R. Pardyjak, M. J. Brown, D. S. DeCroix, T. N. McPherson, and W. S. Smith, 2001: The Salt Lake City DOE CBNP URBAN Experiment of fall 2000: LANL urban wind and temperature measurements. LA-UR-01-950, 113 pp.

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Thistle, H. W., D. R. Murry, M. R. Ratte, and M. R. Carroll, 1995: Atmospheric tracer concentrations from elevated source in urban core. J. Environ. Eng., 121 , 515.

    • Search Google Scholar
    • Export Citation
  • Vardoulakis, S., B. E. A. Fisher, K. Pericleous, and N. Gonzalez-Flesca, 2003: Modelling air quality in street canyon: A review. Atmos. Environ., 37 , 155182.

    • Search Google Scholar
    • Export Citation
  • Venkatram, A., V. Isakov, D. Pankratz, J. Heumann, and J. Yuan, 2004: The analysis of data from an urban dispersion experiment. Atmos. Environ., 38 , 36473659.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 76 45 10
PDF Downloads 62 43 24

Plume Dispersion Anomalies in a Nocturnal Urban Boundary Layer in Complex Terrain

View More View Less
  • 1 NOAA/Air Resources Laboratory Field Research Division, Idaho Falls, Idaho
  • | 2 Pacific Northwest National Laboratory, Richland, Washington
Restricted access

Abstract

The URBAN 2000 experiments were conducted in the complex urban and topographical terrain in Salt Lake City, Utah, in stable nighttime conditions. Unexpected plume dispersion often arose because of the interaction of complex terrain and mountain–valley flow dynamics, drainage flows, synoptic influences, and urban canopy effects, all within a nocturnal boundary layer. It was found that plume dispersion was strongly influenced by topography, that dispersion can be significantly different than what might be expected based upon the available wind data, and that it is problematic to rely on any one urban-area wind measurement to predict or anticipate dispersion. Small-scale flows can be very important in dispersion, and their interaction with the larger-scale flow field needs to be carefully considered. Some of the anomalies observed include extremely slow dispersion, complicated recirculation dispersion patterns in which plume transport was in directions opposed to the measured winds, and flow decoupling. Some of the plume dispersion anomalies could only be attributed to small-scale winds that were not resolved by the existing meteorological monitoring network. The results shown will make clear the difficulties in modeling or planning for emergency response to toxic releases in a nocturnal urban boundary layer within complex terrain.

Corresponding author address: Dennis Finn, NOAA/ARLFRD, 1750 Foote Drive, Idaho Falls, ID 83402. Email: dennis.finn@noaa.gov

Abstract

The URBAN 2000 experiments were conducted in the complex urban and topographical terrain in Salt Lake City, Utah, in stable nighttime conditions. Unexpected plume dispersion often arose because of the interaction of complex terrain and mountain–valley flow dynamics, drainage flows, synoptic influences, and urban canopy effects, all within a nocturnal boundary layer. It was found that plume dispersion was strongly influenced by topography, that dispersion can be significantly different than what might be expected based upon the available wind data, and that it is problematic to rely on any one urban-area wind measurement to predict or anticipate dispersion. Small-scale flows can be very important in dispersion, and their interaction with the larger-scale flow field needs to be carefully considered. Some of the anomalies observed include extremely slow dispersion, complicated recirculation dispersion patterns in which plume transport was in directions opposed to the measured winds, and flow decoupling. Some of the plume dispersion anomalies could only be attributed to small-scale winds that were not resolved by the existing meteorological monitoring network. The results shown will make clear the difficulties in modeling or planning for emergency response to toxic releases in a nocturnal urban boundary layer within complex terrain.

Corresponding author address: Dennis Finn, NOAA/ARLFRD, 1750 Foote Drive, Idaho Falls, ID 83402. Email: dennis.finn@noaa.gov

Save