• Ferraro, R. R., E. A. Smith, W. Berg, and G. J. Huffman, 1998: A screening methodology for passive microwave precipitation retrieval algorithms. J. Atmos. Sci., 55 , 15831600.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39 , 20382052.

    • Search Google Scholar
    • Export Citation
  • Kawanishi, T., and Coauthors, 2003: The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), NASDA’s contribution to the EOS for the global energy and water cycle studies. IEEE Trans. Geosci. Remote Sens., 41 , 184194.

    • Search Google Scholar
    • Export Citation
  • Kubota, T., and Coauthors, 2007: Global precipitation map using satelliteborne microwave radiometers by the GSMaP project: Production and validation. IEEE Trans. Geosci. Remote Sens., 45 , 22592275.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15 , 809817.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40 , 18011820.

    • Search Google Scholar
    • Export Citation
  • Liu, G., 1998: A fast and accurate model for microwave radiance calculation. J. Meteor. Soc. Japan, 76 , 335343.

  • Okamoto, K., T. Iguchi, N. Takahashi, K. Iwanami, and T. Ushio, 2005: The global satellite mapping of precipitation (GSMaP) project. Proc. 2005 Int. Symp. on Geoscience and Remote Sensing, Seoul, South Korea, Institute of Electrical and Electronics Engineers, 3414–3416.

  • Press, W., S. Teukolsky, W. Vetterling, and B. Flannery, 1996: Robust estimation. Numerical Recipes in Fortran 77: The Art of Scientific Computing, 2nd ed. W. Press et al., Eds., Cambridge University Press, 694–700.

    • Search Google Scholar
    • Export Citation
  • Seto, S., N. Takahashi, and T. Iguchi, 2005: Rain/no-rain classification methods for microwave radiometer observations over land using statistical information for brightness temperatures under no-rain conditions. J. Appl. Meteor., 44 , 12431259.

    • Search Google Scholar
    • Export Citation
  • Smith, E. A., and Coauthors, 2007: International Global Precipitation Measurement (GPM) program and mission: An overview. Measuring Precipitation from Space, EURAINSAT and the Future, V. Levizzani, P. Bauer, and F. J. Turk, Eds., Springer-Verlag, 611–653.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 112 58 3
PDF Downloads 43 22 1

Advanced Rain/No-Rain Classification Methods for Microwave Radiometer Observations over Land

View More View Less
  • 1 Institute of Industrial Science, University of Tokyo, Tokyo, Japan
  • | 2 Japan Aerospace and Exploration Agency, Tsukuba, Japan
  • | 3 National Institute of Information and Communications Technology, Koganei, Japan
  • | 4 Institute of Industrial Science, University of Tokyo, Tokyo, Japan
Restricted access

Abstract

Seto et al. developed rain/no-rain classification (RNC) methods over land for the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI). In this study, the methods are modified for application to other microwave radiometers. The previous methods match TMI observations with TRMM precipitation radar (PR) observations, classify the TMI pixels into rain pixels and no-rain pixels, and then statistically summarize the observed brightness temperature at the no-rain pixels into a land surface brightness temperature database. In the modified methods, the probability distribution of brightness temperature under no-rain conditions is derived from unclassified TMI pixels without the use of PR. A test with the TMI shows that the modified (PR independent) methods are better than the RNC method developed for the Goddard profiling algorithm (GPROF; the standard algorithm for the TMI) while they are slightly poorer than corresponding previous (PR dependent) methods. M2d, one of the PR-independent methods, is applied to observations from the Advanced Microwave Scanning Radiometer for Earth Observing Satellite (AMSR-E), is evaluated for a matchup case with PR, and is evaluated for 1 yr with a rain gauge dataset in Japan. M2d is incorporated into a retrieval algorithm developed by the Global Satellite Mapping of Precipitation project to be applied for the AMSR-E. In latitudes above 30°N, the rain-rate retrieval is compared with a rain gauge dataset by the Global Precipitation Climatology Center. Without a snow mask, a large amount of false rainfall due to snow contamination occurs. Therefore, a simple snow mask using the 23.8-GHz channel is applied and the threshold of the mask is optimized. Between 30° and 60°N, the optimized snow mask forces the miss of an estimated 10% of the total rainfall.

Corresponding author address: Shinta Seto, Be607, 4-6-1, Komaba, Meguro-Ku, Tokyo 153-8505, Japan. Email: seto@rainbow.iis.u-tokyo.ac.jp

Abstract

Seto et al. developed rain/no-rain classification (RNC) methods over land for the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI). In this study, the methods are modified for application to other microwave radiometers. The previous methods match TMI observations with TRMM precipitation radar (PR) observations, classify the TMI pixels into rain pixels and no-rain pixels, and then statistically summarize the observed brightness temperature at the no-rain pixels into a land surface brightness temperature database. In the modified methods, the probability distribution of brightness temperature under no-rain conditions is derived from unclassified TMI pixels without the use of PR. A test with the TMI shows that the modified (PR independent) methods are better than the RNC method developed for the Goddard profiling algorithm (GPROF; the standard algorithm for the TMI) while they are slightly poorer than corresponding previous (PR dependent) methods. M2d, one of the PR-independent methods, is applied to observations from the Advanced Microwave Scanning Radiometer for Earth Observing Satellite (AMSR-E), is evaluated for a matchup case with PR, and is evaluated for 1 yr with a rain gauge dataset in Japan. M2d is incorporated into a retrieval algorithm developed by the Global Satellite Mapping of Precipitation project to be applied for the AMSR-E. In latitudes above 30°N, the rain-rate retrieval is compared with a rain gauge dataset by the Global Precipitation Climatology Center. Without a snow mask, a large amount of false rainfall due to snow contamination occurs. Therefore, a simple snow mask using the 23.8-GHz channel is applied and the threshold of the mask is optimized. Between 30° and 60°N, the optimized snow mask forces the miss of an estimated 10% of the total rainfall.

Corresponding author address: Shinta Seto, Be607, 4-6-1, Komaba, Meguro-Ku, Tokyo 153-8505, Japan. Email: seto@rainbow.iis.u-tokyo.ac.jp

Save