• Andreas, E. L., 1987: On the Kolmogorov constants for the temperature-humidity cospectrum and the refractive index spectrum. J. Atmos. Sci., 44 , 23992406.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., 1988: Estimating C2 n over snow and sea ice from meteorological data. J. Opt. Soc. Amer., A5 , 481495.

  • Beland, R. R., 1993: Propagation through atmospheric optical turbulence. Atmospheric Propagation of Radiation, F. G. Smith, Ed., Vol. 2, The Infrared and Electro-Optical Systems Handbook, SPIE Press, 157–232.

    • Search Google Scholar
    • Export Citation
  • Beland, R. R., , and J. H. Brown, 1988: A deterministic temperature model for stratospheric optical turbulence. Phys. Scipta, 37 , 419423.

    • Search Google Scholar
    • Export Citation
  • Chang, P. C., , and I-M. Cheng, 1972: Interaction subrange spectra of turbulent wind over an air-water interface. J. Phys. Oceanogr., 2 , 273280.

    • Search Google Scholar
    • Export Citation
  • Claverie, J., , Y. Hurtaud, , Y. de Fromont, , and A. Junchat, 1995: Modélisation des profils verticaux d’indice de réfraction et de C2 n en atmosphère marine. NASA Tech. Rep. AGARD-CP-567, 29-1–29-11. [Available from NASA Center for Aerospace Information, 800 Elkridge Landing Rd., Linthicum Heights, MD 21090-2934.].

  • D’Agostini, G., 2003: Bayesian Reasoning in Data Analysis. World Scientific, 329 pp.

  • Davidson, K. L., , G. E. Schacher, , C. W. Fairall, , and A. K. Goroch, 1981: Verification of the bulk method for calculating overwater optical turbulence. Appl. Opt., 20 , 29192924.

    • Search Google Scholar
    • Export Citation
  • Dion, D., , D. Seiffer, , K. Stein, , J. L. Forand, , and G. Potvin, 2005: Raypath deviation under stable and unstable conditions. Optics in Atmospheric Propagation and Adaptive Systems VIII, K. Stein and A. Kohnle, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 5981), doi:10.1117/12.637615.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., , C. W. Fairall, , P. G. Mestayer, , and S. E. Larsen, 1991: A study of the inertial-dissipation method for computing air-sea fluxes. J. Geophys. Res., 96 , 1068910711.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., , E. F. Bradley, , D. P. Rogers, , J. B. Edson, , and G. S. Young, 1996: Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res., 101 , 37473764.

    • Search Google Scholar
    • Export Citation
  • Forand, J. L., 1999: The L(W)WKD Marine Boundary Layer Model: Version 7.09. Defence Research Establishment Valcartier Rep. DREV-TR-1999-099, 101 pp. [Available from Director Research and Development Communications and Information Management, Department of National Defence, Ottawa, ON K1A 0K2, Canada.].

  • Forand, J. L., 2007: Method to estimate infrared and radio-frequency synergy. Opt. Eng., 46 , 126001.

  • Frederickson, P. A., , K. L. Davidson, , C. R. Zeisse, , and C. S. Bendall, 2000: Estimating the refractive index structure parameter (Cn2) over the ocean using bulk methods. J. Appl. Meteor., 39 , 17701783.

    • Search Google Scholar
    • Export Citation
  • Frenzen, P., , and C. A. Vogel, 1995: On the magnitude and apparent range of variation of the von Karman constant in the atmospheric surface layer. Bound.-Layer Meteor., 72 , 371392.

    • Search Google Scholar
    • Export Citation
  • Friehe, C. A., 1977: Estimation of the refractive-index temperature structure parameter over the ocean. Appl. Opt., 16 , 334340.

  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Gelman, A., , J. B. Carlin, , H. S. Stern, , and D. B. Rubin, 2004: Bayesian Data Analysis. Chapman & Hall/CRC, 668 pp.

  • Heemskerk, E., 2005: RF propagation measurement and model validation during RF/IR synergy trial VAMPIRA. Optics in Atmospheric Propagation and Adaptive Systems VIII, K. Stein and A. Kohnle, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 5981), doi:10.1117/12.637616.

    • Search Google Scholar
    • Export Citation
  • Hill, R. J., 1989: Implications of Monin-Obukhov similarity theory for scalar quantities. J. Atmos. Sci., 46 , 22362244.

  • Kaimal, J. C., , and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows. Oxford University Press, 289 pp.

  • Kondo, J., 1975: Air-sea bulk transfer coefficients in diabatic conditions. Bound.-Layer Meteor., 9 , 91112.

  • Kohsiek, W., 1982: Measuring C2 T, C2 Q, and CTQ in the unstable surface layer, and relations to the vertical fluxes of heat moisture. Bound.-Layer Meteor., 24 , 89107.

    • Search Google Scholar
    • Export Citation
  • Kunz, G. J., , M. M. Moerman, , P. J. Fritz, , and G. de Leeuw, 1996: Validation of a bulk turbulence model with thermal images of a point source. Image Propagation through the Atmosphere, C. Dainty and L. R. Bissonnette, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 2828), 108–116.

    • Search Google Scholar
    • Export Citation
  • Potvin, G., , J. L. Forand, , and D. Dion, 2007: Some space-time statistics of the turbulent point-spread function. J. Opt. Soc. Amer., A24 , 753763.

    • Search Google Scholar
    • Export Citation
  • Priestley, J. T., , and R. J. Hill, 1985: Measuring high-frequency humidity, temperature and radio refractive index in the surface layer. J. Atmos. Oceanic Technol., 2 , 233251.

    • Search Google Scholar
    • Export Citation
  • Schmid, H. P., 1997: Experimental design for flux measurements: Matching scales of observations and fluxes. Agric. For. Meteor., 87 , 179200.

    • Search Google Scholar
    • Export Citation
  • Seiffer, D., , and K. Stein, 2005: Variations of apparent target position due to refraction. Optics in Atmospheric Propagation and Adaptive Systems VIII, K. Stein and A. Kohnle, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 5981), doi:10.1117/12.629574.

    • Search Google Scholar
    • Export Citation
  • Smith, D. S., and Coauthors, 1992: Sea surface wind stress and drag coefficients: The HEXOS results. Bound.-Layer Meteor., 60 , 109142.

    • Search Google Scholar
    • Export Citation
  • Tatarskii, V. I., 1961: Wave Propagation in a Turbulent Medium. McGraw-Hill, 285 pp.

  • Walters, D. L., , and K. E. Kunkel, 1981: Atmospheric modulation transfer function for desert and mountain locations: The atmospheric effects on r0. J. Opt. Soc. Amer., 71 , 397405.

    • Search Google Scholar
    • Export Citation
  • Wang, T., , G. R. Ochs, , and S. F. Clifford, 1978: A saturation-resistant optical scintillometer to measure C2 n. J. Opt. Soc. Amer., 68 , 334338.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 23 23 1
PDF Downloads 10 10 2

An Empirical Analysis of Bulk Cn2 Models over Water

View More View Less
  • 1 Defence R & D Canada–Valcartier, North Québec, Québec, Canada
  • | 2 CREC St-Cyr/LESTP & IETR, Guer, France
  • | 3 Department of Meteorology, Graduate School of Engineering and Applied Sciences, Naval Postgraduate School, Monterey, California
  • | 4 Defence R & D Canada–Valcartier, North Québec, Québec, Canada
© Get Permissions
Restricted access

Abstract

This article examines some of the difficulties associated with the determination of C2n over water in a coastal region using a bulk model. The analysis shows the need to supplement bulk models with elements that do not belong to traditional Monin–Obukhov surface-layer theory. A reexamination of the scintillation measurements collected during the Electro-Optical Propagation Assessment in a Coastal Environment (EOPACE) campaign leads the authors to include 1) the nonuniformity of sensible heat and humidity fluxes and 2) a deficit of the scintillation that seems to depend only on the characteristic virtual potential temperature. It is suggested that the anomalous scintillation deficit represents an alteration of a characteristic length related to the optical turbulence, likely caused by the interaction of the surface layer with the sea surface. The new parameters are estimated using Bayesian regression methods applied to the EOPACE data. Predictions obtained with this new model are then compared with scintillation measurements obtained during the recent Validation Measurement for Propagation in the Infrared and Radar (VAMPIRA) campaign. Better agreement is obtained with the new model than with a conventional bulk model. The implications of the modifications made to the calculation of C2n are discussed.

Corresponding author address: Guy Potvin, Defence R & D Canada–Valcartier, 2459 Pie-XI Blvd., N. Québec, QC G3J 1X5, Canada. Email: guy.potvin@drdc-rddc.gc.ca

Abstract

This article examines some of the difficulties associated with the determination of C2n over water in a coastal region using a bulk model. The analysis shows the need to supplement bulk models with elements that do not belong to traditional Monin–Obukhov surface-layer theory. A reexamination of the scintillation measurements collected during the Electro-Optical Propagation Assessment in a Coastal Environment (EOPACE) campaign leads the authors to include 1) the nonuniformity of sensible heat and humidity fluxes and 2) a deficit of the scintillation that seems to depend only on the characteristic virtual potential temperature. It is suggested that the anomalous scintillation deficit represents an alteration of a characteristic length related to the optical turbulence, likely caused by the interaction of the surface layer with the sea surface. The new parameters are estimated using Bayesian regression methods applied to the EOPACE data. Predictions obtained with this new model are then compared with scintillation measurements obtained during the recent Validation Measurement for Propagation in the Infrared and Radar (VAMPIRA) campaign. Better agreement is obtained with the new model than with a conventional bulk model. The implications of the modifications made to the calculation of C2n are discussed.

Corresponding author address: Guy Potvin, Defence R & D Canada–Valcartier, 2459 Pie-XI Blvd., N. Québec, QC G3J 1X5, Canada. Email: guy.potvin@drdc-rddc.gc.ca

Save