• Anagnostou, E. N., , and W. F. Krajewski, 1997: Simulation of radar reflectivity fields: Algorithm formulation and evaluation. Water Resour. Res., 33 , 14191428.

    • Search Google Scholar
    • Export Citation
  • Andsager, K., , K. V. Beard, , and N. F. Laird, 1999: Laboratory measurements of axis ratios for large raindrops. J. Atmos. Sci., 56 , 26732683.

    • Search Google Scholar
    • Export Citation
  • Barber, P., , and C. Yeh, 1975: Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies. Appl. Opt., 14 , 28642872.

  • Bechtold, P., and Coauthors, 2000: A GCSS model intercomparison for a tropical squall line observed during TOGA-COARE. II: Intercomparison of single-column models and a cloud-resolving model. Quart. J. Roy. Meteor. Soc., 126 , 865888.

    • Search Google Scholar
    • Export Citation
  • Bohren, C. F., , and L. J. Battan, 1982: Radar backscattering of microwaves by spongy ice spheres. J. Atmos. Sci., 39 , 26232628.

  • Brandes, E. A., , G. Zhang, , and J. Sun, 2006: On the influence of assumed drop size distribution form on radar-retrieved thunderstorm microphysics. J. Appl. Meteor. Climatol., 45 , 259268.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., , and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., , R. M. Rasmussen, , and J. Vivekanandan, 1986: Multiparameter radar measurements in Colorado convective storms. Part I: Graupel melting studies. J. Atmos. Sci., 43 , 25452563.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., , J. C. Wyngaard, , and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131 , 23942416.

    • Search Google Scholar
    • Export Citation
  • Capsoni, C., , M. D’Amico, , and R. Nebuloni, 2001: A multiparameter polarimetric radar simulator. J. Atmos. Oceanic Technol., 18 , 17991809.

    • Search Google Scholar
    • Export Citation
  • Caumont, O., and Coauthors, 2006: A radar simulator for high-resolution nonhydrostatic models. J. Atmos. Oceanic Technol., 23 , 10491067.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., , W. A. Cooper, , and V. N. Bringi, 1988: Axis ratios and oscillations of raindrops. J. Atmos. Sci., 45 , 13231333.

  • Cheng, L., , and M. English, 1983: A relationship between hailstone concentration and size. J. Atmos. Sci., 40 , 204213.

  • Chevallier, F., , and P. Bauer, 2003: Model rain and clouds over oceans: Comparison with SSM/I observations. Mon. Wea. Rev., 131 , 12401255.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., , M. F. Garvert, , J. B. Wolfe, , C. F. Mass, , and C. P. Woods, 2005: The 13–14 December 2001 IMPROVE-2 event. Part III: Simulated microphysical budgets and sensitivity studies. J. Atmos. Sci., 62 , 35353558.

    • Search Google Scholar
    • Export Citation
  • Craig, G. C., , and A. Dörnbrack, 2008: Entrainment in cumulus clouds: What resolution is cloud-resolving? J. Atmos. Sci., 65 , 39783988.

    • Search Google Scholar
    • Export Citation
  • Damrath, U., , G. Doms, , D. Fruhwald, , E. Heise, , B. Richter, , and J. Steppeler, 2000: Operational quantitative precipitation forecasting at the German weather service. J. Hydrol., 239 , 260285.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., , and D. S. Zrnic, 1984: Doppler Radar and Weather Observations. Academic Press, 458 pp.

  • Doviak, R. J., , V. Bringi, , A. Ryzhkov, , A. Zahrai, , and D. Zrnic, 2000: Considerations for polarimetric upgrades to operational WSR-88D radars. J. Atmos. Oceanic Technol., 17 , 257278.

    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., , J. D. Smith, , S. Businger, , and C. Doswell, 2000: Hydrological aspects of weather prediction and flood warnings: Report on the ninth prospectus development team of the U.S. Weather Research Program. Bull. Amer. Meteor. Soc., 81 , 26652680.

    • Search Google Scholar
    • Export Citation
  • Ducrocq, V., , F. Bouttier, , S. Malardel, , T. Montmerle, , and Y. Seity, 2005: Le Projet AROME. La Houille Blanche, 2 , 3943.

  • Ebert, E. E., , U. Damrath, , W. Wergen, , and M. E. Baldwin, 2003: The WGNE assessment of short-term quantitative precipitation forecast. Bull. Amer. Meteor. Soc., 84 , 481492.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., , and W. Szyrmer, 1999: Modeling of the melting layer: Part II: Electromagnetic. J. Atmos. Sci., 56 , 35933600.

  • Ferrier, B. S., , W. K. Tao, , and J. Simpson, 1995: A double-moment multiple-phase four-class bulk ice scheme. Part II: Simulations of convective storms in different large-scale environments and comparisons with other bulk parameterizations. J. Atmos. Sci., 52 , 10011033.

    • Search Google Scholar
    • Export Citation
  • Friedrich, K., , U. Germann, , J. J. Gourley, , and P. Tabary, 2007: Effects of radar beam shielding on rainfall estimation for polarimetric C-band radar. J. Atmos. Oceanic Technol., 24 , 18391859.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and Coauthors, 1998: Quantitative precipitation forecasting: Report of the eighth prospectus development team, U.S. Weather Research Program. Bull. Amer. Meteor. Soc., 79 , 285299.

    • Search Google Scholar
    • Export Citation
  • Fujiyoshi, Y., 1986: Melting snowflakes. J. Atmos. Sci., 43 , 307311.

  • Gallus Jr., W. A., , and M. Pfeifer, 2008: Intercomparison of simulations using 5 WRF microphysical schemes with dual-polarization data for a German squall line. Adv. Geosci., 16 , 109116.

    • Search Google Scholar
    • Export Citation
  • Garvert, M. F., , C. P. Woods, , B. A. Colle, , C. F. Mass, , P. V. Hobbs, , M. T. Stoelinga, , and J. B. Wolfe, 2005: The 13–14 December 2001 IMPROVE-2 event. Part II: Comparison of MM5 model simulations of clouds and precipitation with observations. J. Atmos. Sci., 62 , 35203534.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., , J. M. Straka, , and E. N. Rasmussen, 2004: Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev., 132 , 26102627.

    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., , P. Tabary, , and J. P. du Chatelet, 2006: Data quality of the Meteo France C-band polarimetric radar. J. Atmos. Oceanic Technol., 23 , 13401356.

    • Search Google Scholar
    • Export Citation
  • Guichard, F., and Coauthors, 2004: Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Quart. J. Roy. Meteor. Soc., 130 , 31393172.

    • Search Google Scholar
    • Export Citation
  • Haase, G., , and S. Crewell, 2000: Simulation of radar reflectivities using a mesoscale weather forecast model. Water Resour. Res., 36 , 22212231.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1978: The characteristics of graupel particles in northeastern Colorado cumulus congestus clouds. J. Atmos. Sci., 35 , 284295.

    • Search Google Scholar
    • Export Citation
  • Höller, H., , V. Bringi, , J. Hubbert, , M. Hagen, , and P. F. Meischner, 1994: Life cycle and precipitation formation in a hybrid-type hailstorm revealed by polarimetric and Doppler radar measurements. J. Atmos. Sci., 51 , 25002522.

    • Search Google Scholar
    • Export Citation
  • Holt, A. R., 1984: The scattering of electromagnetic waves by single hydrometeors. Radio Sci., 17 , 929965.

  • Illingworth, A. J., 2004: Polarimetric measurements. Weather Radar: Principles and Advanced Applications, P. F. Meischner, Ed., Springer, 130–166.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and Coauthors, 2007: Cloudnet: Continuous evaluation of cloud profiles in seven operational models using ground-based observations. Bull. Amer. Meteor. Soc., 88 , 883898.

    • Search Google Scholar
    • Export Citation
  • Keil, C., , A. Tafferner, , and H. Mannstein, 2003: Evaluating high-resolution model forecasts of European winter storms by use of satellite and radar observations. Wea. Forecasting, 18 , 732747.

    • Search Google Scholar
    • Export Citation
  • Klaassen, W., 1988: Radar observations and simulations of the melting layer of precipitation. J. Atmos. Sci., 45 , 37413753.

  • Liebe, H. J., , G. A. Hufford, , and M. G. Cotton, cited. 1993: Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz. Proc. AGARD 52nd Special Meeting of the Panel on Electromagnetic Wave Propagation, Palma de Mallorca, Spain, NATO, 208 pp. [Available online at http://www.rta.nato.int/Pubs/RDP.asp?RDP=AGARD-CP-542.].

  • Matrosov, S. Y., , R. F. Reinking, , R. A. Kropfli, , and B. W. Bartram, 1996: Estimation of ice hydrometeor types and shapes from radar polarization measurements. J. Atmos. Oceanic Technol., 13 , 8596.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., , and L. D. Travis, 1998: Capabilities and limitations of a current Fortran implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers. J. Quant. Spectrosc. Radiat. Transfer, 60 , 309324.

    • Search Google Scholar
    • Export Citation
  • Oguchi, T., 1983: Electromagnetic wave propagation and scattering in rain and other hydrometeors. Proc. IEEE, 71 , 10291078.

  • Olson, W. S., , P. Bauer, , N. F. Viltard, , D. E. Johnson, , W-K. Tao, , R. Meneghini, , and L. Liao, 2001: A melting-layer model for passive/active microwave remote sensing applications. Part I: Model formulation and comparison with observations. J. Appl. Meteor., 40 , 11451163.

    • Search Google Scholar
    • Export Citation
  • Pfeifer, M., , G. Craig, , M. Hagen, , and C. Keil, 2004: A polarimetric radar forward operator. Proc. Third European Conf. on Radar Meteorology (ERAD), Visby, Island of Gotland, Sweden, 494–498.

  • Pruppacher, H. R., , and J. D. Klett, 2003: Microphysics of Clouds and Precipitation. Kluwer Academic Publishers, 954 pp.

  • Ray, P. S., 1972: Broadband complex refractive indices of ice and water. Appl. Opt., 11 , 18361844.

  • Ryzhkov, A. V., , T. J. Schuur, , D. W. Burgess, , P. L. Heinselman, , S. E. Giangrande, , and D. S. Zrnic, 2005: The joint polarization experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86 , 809824.

    • Search Google Scholar
    • Export Citation
  • Schroth, A. C., , M. S. Chandra, , and P. F. Meischner, 1988: A C-band coherent polarimetric radar for propagation and cloud physics research. J. Atmos. Oceanic Technol., 5 , 804822.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., , J. B. Klemp, , J. Dudhia, , D. O. Gill, , D. M. Barker, , W. Wang, , and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp.

  • Steppeler, J., , G. Doms, , U. Schattler, , H. W. Bitzer, , A. Gassmann, , U. Damrath, , and G. Gregoric, 2003: Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteor. Atmos. Phys., 82 , 7596.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., , D. S. Zrnic, , and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39 , 13411372.

    • Search Google Scholar
    • Export Citation
  • Szyrmer, W., , and I. Zawadzki, 1999: Modeling of the melting layer. Part I: Dynamics and microphysics. J. Atmos. Sci., 56 , 35733592.

  • Vivekanandan, J., 1986: Multiparameter radar measurements in Colorado convective storms. Ph.D. thesis, Colorado State University and NCAR, 196 pp.

  • Vivekanandan, J., , V. N. Bringi, , and R. Raghavan, 1990: Multiparameter radar modeling and observation of melting ice. J. Atmos. Sci., 47 , 549564.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., , W. M. Adams, , and V. N. Bringi, 1991: Rigorous approach to polarimetric radar modeling of hydrometeor orientation distributions. J. Appl. Meteor., 30 , 10531063.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., , R. Raghavan, , and V. N. Bringi, 1993: Polarimetric radar modeling of mixtures of precipitation particles. IEEE Trans. Geosci. Remote Sens., 31 , 10171030.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., , D. S. Zrnic, , S. M. Ellis, , R. Oye, , A. V. Ryzhkov, , and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80 , 381388.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., 1984: Optical constants of ice from the ultraviolet to the microwave. Appl. Opt., 23 , 12061225.

  • Waterman, P. C., 1969: Scattering by dielectric obstacles. Alta Freq., 38 , 348352.

  • Zhang, G., , J. Sun, , and E. A. Brandes, 2006: Improving parameterization of rain microphysics with disdrometer and radar observations. J. Atmos. Sci., 63 , 12731290.

    • Search Google Scholar
    • Export Citation
  • Zrnic, D. S., , T. D. Keenan, , L. D. Carey, , and P. May, 2000: Sensitivity analysis of polarimetric variables at a 5-cm wavelength in rain. J. Appl. Meteor., 39 , 15141526.

    • Search Google Scholar
    • Export Citation
  • Zrnic, D. S., , A. Ryzhkov, , J. Straka, , Y. Liu, , and J. Vivekananadan, 2001: Testing a procedure for automatic classification of hydrometeor types. J. Atmos. Oceanic Technol., 18 , 892913.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 45 45 7
PDF Downloads 45 45 4

A Polarimetric Radar Forward Operator for Model Evaluation

View More View Less
  • 1 DLR-Institute of Atmospheric Physics, Oberpfaffenhofen, Germany
© Get Permissions
Restricted access

Abstract

A polarimetric radar forward operator has been developed as a tool for the systematic evaluation of microphysical parameterization schemes in high-resolution numerical weather prediction (NWP) models. The application of such a forward operator allows a direct comparison of the model simulations to polarimetric radar observations. While the comparison of observed and synthetic reflectivity gives information on the quality of quantitative precipitation forecasts, the information from the polarimetric quantities allows for a direct evaluation of the capacity of the NWP model to realistically describe the processes involved in the formation and interactions of the hydrometeors and, hence, the performance of the microphysical parameterization scheme. This information is expected to be valuable for detecting systematic model errors and hence improve model physics. This paper summarizes the technical characteristics of the synthetic polarimetric radar (SynPolRad). Different polarimetric radar quantities are computed from model forecasts using a T-matrix scattering code and ice phase hydrometeors are explicitly considered. To do so, the sensitivities of the scattering processes to the microphysical characteristics of different ice hydrometeors are investigated using sensitivity studies. Furthermore, beam propagation effects are considered, including attenuation and beam bending. The performance of SynPolRad and the consistence of the assumptions made in the derivation of the input parameters are illustrated in a case study. The resulting synthetic quantities as well as hydrometeor classification are compared with observations and are shown to be consistent with the model assumptions.

Corresponding author address: Monika Pfeifer, DLR-Institute of Atmospheric Physics, Oberpfaffenhofen, 82234 Wessling, Germany. Email: monika.pfeifer@hyds.es

Abstract

A polarimetric radar forward operator has been developed as a tool for the systematic evaluation of microphysical parameterization schemes in high-resolution numerical weather prediction (NWP) models. The application of such a forward operator allows a direct comparison of the model simulations to polarimetric radar observations. While the comparison of observed and synthetic reflectivity gives information on the quality of quantitative precipitation forecasts, the information from the polarimetric quantities allows for a direct evaluation of the capacity of the NWP model to realistically describe the processes involved in the formation and interactions of the hydrometeors and, hence, the performance of the microphysical parameterization scheme. This information is expected to be valuable for detecting systematic model errors and hence improve model physics. This paper summarizes the technical characteristics of the synthetic polarimetric radar (SynPolRad). Different polarimetric radar quantities are computed from model forecasts using a T-matrix scattering code and ice phase hydrometeors are explicitly considered. To do so, the sensitivities of the scattering processes to the microphysical characteristics of different ice hydrometeors are investigated using sensitivity studies. Furthermore, beam propagation effects are considered, including attenuation and beam bending. The performance of SynPolRad and the consistence of the assumptions made in the derivation of the input parameters are illustrated in a case study. The resulting synthetic quantities as well as hydrometeor classification are compared with observations and are shown to be consistent with the model assumptions.

Corresponding author address: Monika Pfeifer, DLR-Institute of Atmospheric Physics, Oberpfaffenhofen, 82234 Wessling, Germany. Email: monika.pfeifer@hyds.es

Save