• Andreas, E. L., , C. W. Fairall, , P. O. G. Persson, , and P. S. Guest, 2003: Probability distributions for the inner scale and the refractive index structure parameter and their implications for flux averaging. J. Appl. Meteor., 42 , 13161329.

    • Search Google Scholar
    • Export Citation
  • Avila, R., , J. Vernin, , and E. Masciadri, 1997: Whole atmosphere turbulence profiling with generalized G-SCIDAR. Appl. Opt., 36 , 78987905.

    • Search Google Scholar
    • Export Citation
  • Ballard, S. P., , B. W. Golding, , and R. N. B. Smith, 1991: Mesoscale model experimental forecasts of the haar of northeast Scotland. Mon. Wea. Rev., 119 , 21072123.

    • Search Google Scholar
    • Export Citation
  • Borgnino, J., 1990: Estimation of the spatial coherence outer scale relevant to long base-line interferometry and imaging in optical astronomy. Appl. Opt., 29 , 18631865.

    • Search Google Scholar
    • Export Citation
  • Businger, S., , R. McLaren, , R. Ogasawara, , D. Simons, , and R. J. Wainscoat, 2002: Starcasting. Bull. Amer. Meteor. Soc., 83 , 858871.

  • Casali, M., and Coauthors, 2007: The UKIRT wide-field camera. Astron. Astrophys., 467 , 777784.

  • Cherubini, T., , S. Businger, , C. Velden, , and R. Ogasawara, 2006: The impact of satellite-derived atmospheric motion vectors on mesoscale forecasts over Hawaii. Mon. Wea. Rev., 134 , 20092020.

    • Search Google Scholar
    • Export Citation
  • Cherubini, T., , S. Businger, , R. Lyman, , and M. Chun, 2008: Modeling optical turbulence and seeing over Mauna Kea. J. Appl. Meteor. Climatol., 47 , 11401155.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1972: Theoretical expression for the countergradient vertical heat flux. J. Geophys. Res., 77 , 59005904.

  • Gayno, G. A., 1994: Development of a higher-order, fog-producing boundary layer model suitable for use in numerical weather prediction. M.S. thesis, Department of Meteorology, The Pennsylvania State University, 104 pp.

  • Holtslag, A. A. M., , and C-H. Moeng, 1991: Eddy diffusivity and countergradient transport in the convective atmospheric boundary layer. J. Atmos. Sci., 48 , 16901698.

    • Search Google Scholar
    • Export Citation
  • Kornilov, V., , A. A. Tokovinin, , O. Voziakova, , A. Zaitsev, , N. Shatsky, , S. F. Potanin, , and M. S. Sarazin, 2003: Mass: A monitor of the vertical turbulence distribution. Adaptive Optical System Technologies II, P. L. Wizinowich and D. Bonaccini, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 4839), 837–845.

    • Search Google Scholar
    • Export Citation
  • Roddier, F., 1981: The effect of atmospheric turbulence in optical astronomy. Prog. Opt., 19 , 281377.

  • Sarazin, M., , and F. Roddier, 1990: The ESO differential image motion monitor. Astron. Astrophys., 227 , 294300.

  • Shafran, P. C., , N. L. Seaman, , and G. A. Gayno, 2000: Evaluation of numerical predictions of boundary layer structure during the Lake Michigan ozone study. J. Appl. Meteor., 39 , 412426.

    • Search Google Scholar
    • Export Citation
  • Tokovinin, A., 2002: From differential image motion to seeing. Publ. Astron. Soc. Pac., 114 , 11561166.

  • Troen, I., , and L. Mahrt, 1986: A simple model of the atmospheric boundary layer: Sensitivity to surface evaporation. Bound.-Layer Meteor., 37 , 129148.

    • Search Google Scholar
    • Export Citation
  • Uraguchi, F., , N. Takato, , A. Miyashita, , and T. Usuda, 2006: The DIMM station at Subaru Telescope. Ground-based and Airborne Telescopes, L. M. Stepp, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 6267), 62670N, doi:10.1117/12.671798.

    • Search Google Scholar
    • Export Citation
  • Vernin, J., , and F. Roddier, 1973: Experimental determination of two-dimensional spatiotemporal power spectra stellar light scintillation. Evidence for a multiplayer structure of the air turbulence in the upper troposphere. J. Opt. Soc. Amer., 63 , 270273.

    • Search Google Scholar
    • Export Citation
  • Ziad, A., , R. Conan, , A. Tokovinin, , F. Martin, , and J. Borgnino, 2000: From the grating scale monitor to the generalized seeing monitor. Appl. Opt., 39 , 54155425.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 31 31 1
PDF Downloads 31 31 2

Modeling Optical Turbulence and Seeing over Mauna Kea: Verification and Algorithm Refinement

View More View Less
  • 1 University of Hawaii at Manoa, Honolulu, Hawaii
© Get Permissions
Restricted access

Abstract

An optical turbulence algorithm has been running operationally since April 2005 at the Mauna Kea Weather Center. The algorithm makes use of information on turbulence kinetic energy provided by a planetary boundary layer scheme available in the Pennsylvania State University–NCAR Mesoscale Model and estimates the turbulent fluctuations of the atmospheric refractive index and seeing over the summit area of Mauna Kea. To investigate the potential and limitations of the optical turbulence algorithm, one year of observed seeing data from four observatories is compared with the model forecast seeing and a statistical analysis is carried out. Sensitivity tests regarding the accuracy of the underlying numerical weather forecasts and the model’s eddy diffusivity scheme are performed. Results from a simple calibration of the optical turbulence algorithm are presented.

Corresponding author address: Dr. Tiziana Cherubini, Department of Meteorology, University of Hawaii at Manoa, 2525 Correa Rd., Honolulu, HI 96825. Email: tiziana@hawaii.edu

Abstract

An optical turbulence algorithm has been running operationally since April 2005 at the Mauna Kea Weather Center. The algorithm makes use of information on turbulence kinetic energy provided by a planetary boundary layer scheme available in the Pennsylvania State University–NCAR Mesoscale Model and estimates the turbulent fluctuations of the atmospheric refractive index and seeing over the summit area of Mauna Kea. To investigate the potential and limitations of the optical turbulence algorithm, one year of observed seeing data from four observatories is compared with the model forecast seeing and a statistical analysis is carried out. Sensitivity tests regarding the accuracy of the underlying numerical weather forecasts and the model’s eddy diffusivity scheme are performed. Results from a simple calibration of the optical turbulence algorithm are presented.

Corresponding author address: Dr. Tiziana Cherubini, Department of Meteorology, University of Hawaii at Manoa, 2525 Correa Rd., Honolulu, HI 96825. Email: tiziana@hawaii.edu

Save