• Adler, R. F., , A. J. Negrid, , P. R. Keehn, , and I. M. Hakkarinen, 1993: Estimation of monthly rainfall over Japan and surrounding waters from a combination of low-orbit microwave and geosynchronous IR data. J. Appl. Meteor., 32 , 335356.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., , G. J. Huffman, , and P. R. Keehn, 1994: Global tropical rain estimates from microwave-adjusted geosynchronous IR data. Remote Sens. Rev., 11 , 125152.

    • Search Google Scholar
    • Export Citation
  • Allam, R., , G. Holpin, , P. Jackson, , and G-L. Liberti, 1993: Second Algorithm. Intercomparison Project of the Global Precipitation Climatology Project (AIP-2): U.K. and Northwest Europe, February–April 1991. Pre-Workshop Rep., Satellite Image Applications Group, Met Office, 133 pp.

    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., 1979: The relationship between fractional coverage of high cloud and rainfall accumulations during GATE over the B-scale array. Mon. Wea. Rev., 107 , 13821387.

    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., , and B. Meisner, 1987: The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982–1984. Mon. Wea. Rev., 115 , 5174.

    • Search Google Scholar
    • Export Citation
  • Bell, T. L., , and N. Reid, 1993: Detecting the diurnal cycle of rainfall using satellite observations. J. Appl. Meteor., 32 , 311322.

  • Berg, W., , T. L’Ecuyer, , and C. Kummerow, 2006: Rainfall climate regimes: The relationship of regional TRMM rainfall biases to the environment. J. Appl. Meteor. Climatol., 45 , 434454.

    • Search Google Scholar
    • Export Citation
  • Chen, F. W., , and D. H. Staelin, 2003: AIRS/AMSU/HSB precipitation estimates. IEEE Trans. Geosci. Remote Sens., 41 , 410417.

  • Conner, M. D., , and G. W. Petty, 1998: Validation and intercomparison of SSM/I rain-rate retrieval methods over the continental United States. J. Appl. Meteor., 37 , 679700.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., , and M. J. Manton, 1998: Performance of satellite rainfall estimation algorithms during TOGA-COARE. J. Atmos. Sci., 55 , 15371557.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., , M. J. Manton, , P. A. Arkin, , R. J. Allam, , G. E. Holpin, , and A. Gruber, 1996: Results from the GPCP Algorithm Intercomparison Programme. Bull. Amer. Meteor. Soc., 77 , 28752887.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., , E. A. Smith, , W. Berg, , and G. J. Huffman, 1998: A screening methodology for passive microwave precipitation retrieval algorithms. J. Atmos. Sci., 55 , 15831600.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., , F. Weng, , N. C. Grody, , and L. Zhao, 2000: Precipitation characteristics over land from the NOAA-15 AMSU sensor. Geophys. Res. Lett., 27 , 26692672.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., and Coauthors, 2005: NOAA operational hydrological products derived from the Advanced Microwave Sounding Unit. IEEE Trans. Geosci. Remote Sens., 43 , 10361049.

    • Search Google Scholar
    • Export Citation
  • Griffith, C. G., , W. L. Woodley, , P. G. Grube, , D. W. Martin, , J. Stout, , and D. N. Sikdar, 1978: Rain estimation from geosynchronous satellite imagery—Visible and infrared studies. Mon. Wea. Rev., 106 , 11531171.

    • Search Google Scholar
    • Export Citation
  • Grody, N. C., 1991: Classification of snow cover and precipitation using the Special Sensor Microwave/Imager (SSM/I). J. Geophys. Res., 96 , 74237435.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., , T. T. Wilheit, , and W. R. Russell, 1997: Estimation of monthly rainfall over oceans from truncated rain-rate samples: Application to SSM/I data. J. Atmos. Oceanic Technol., 14 , 10121022.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., 1997: Estimates of root-mean-square random error for finite samples of estimated precipitation. J. Appl. Meteor., 36 , 11911201.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multi-satellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8 , 3855.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., , T. Kozu, , R. Meneghini, , J. Awaka, , and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39 , 20382052.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , T. M. Rickenbach, , S. A. Rutledge, , P. E. Ciesielski, , and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12 , 23972418.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., , J. E. Janowiak, , P. A. Arkin, , and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5 , 487503.

    • Search Google Scholar
    • Export Citation
  • Kilonsky, B. J., , and C. S. Ramage, 1976: A technique for estimating tropical open-ocean rainfall from satellite observations. J. Appl. Meteor., 15 , 972975.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., , W. S. Olson, , and L. Giglio, 1996: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote Sens., 34 , 12131232.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., , W. Barnes, , T. Kozu, , J. Shiue, , and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15 , 809817.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39 , 19651982.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40 , 18011820.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., , and H. T. Wu, 2003: Warm rain processes over tropical oceans and climate implications. Geophys. Res. Lett., 30 .2290, doi:10.1029/2003GL018567.

    • Search Google Scholar
    • Export Citation
  • Liao, L., , R. Meneghini, , and T. Iguchi, 2001: Comparisons of rain rate and reflectivity factor derived from the TRMM precipitation radar and the WSR-88D over the Melbourne, Florida, site. J. Atmos. Oceanic Technol., 18 , 19591974.

    • Search Google Scholar
    • Export Citation
  • Lin, X., , L. D. Fowler, , and D. A. Ranfall, 2002: Flying the TRMM satellite in a general circulation model. J. Geophys. Res., 107 .4281, doi:10.1029/2001JD000619.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., , and K. E. Mitchell, 2005: The NCEP stage II/IV hourly precipitation analyses: Development and applications. Preprints, 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2. [Available online at http://ams.confex.com/ams/pdfpapers/83847.pdf.].

  • Liu, G., , and J. A. Curry, 1992: Retrieval of precipitation from satellite microwave measurement using both emission and scattering. J. Geophys. Res., 97 , 99599974.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., , T. Iguchi, , R. Oki, , and M. Kachi, 2002: Comparison of rainfall products derived from TRMM Microwave Imager and precipitation radar. J. Appl. Meteor., 41 , 849862.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., , and T. Kozu, 1990: Spaceborne Weather Radar. Artech House, 199 pp.

  • Nesbitt, S. W., , E. J. Zipser, , and C. Kummerow, 2004: An examination of version-5 rainfall estimates from the TRMM Microwave Imager, precipitation radar, and rain gauges on global, regional, and storm scales. J. Appl. Meteor., 43 , 10161036.

    • Search Google Scholar
    • Export Citation
  • Olson, W. S., , C. Kummerow, , G. M. Heymsfield, , and L. Giglio, 1996: A method for combined passive–active microwave retrievals of cloud and precipitation profiles. J. Appl. Meteor., 35 , 17631789.

    • Search Google Scholar
    • Export Citation
  • Olson, W. S., , C. Kummerow, , Y. Hong, , and W-K. Tao, 1999: Atmospheric latent heating distributions in the tropics derived from satellite passive microwave radiometer measurements. J. Appl. Meteor., 38 , 633664.

    • Search Google Scholar
    • Export Citation
  • Olson, W. S., and Coauthors, 2006: Precipitation and latent heating distributions from satellite passive microwave radiometry. Part I: Improved method and uncertainties. J. Appl. Meteor. Climatol., 45 , 702720.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 1994a: Physical retrievals of over-ocean rain rate from multichannel microwave imaging. Part I: Theoretical characteristics of normalized polarization and scattering indices. Meteor. Atmos. Phys., 54 , 79100.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 1994b: Physical retrievals of over-ocean rain rate from multichannel microwave imaging. Part II: Algorithm implementation. Meteor. Atmos. Phys., 54 , 101122.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 1995: Frequencies and characteristics of global oceanic precipitation from shipboard present-weather reports. Bull. Amer. Meteor. Soc., 76 , 15931616.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 1999: Prevalence of precipitation from warm-topped clouds over eastern Asia and the western Pacific. J. Climate, 12 , 220229.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., , and R. A. Houze, 2000: Comparison of radar data from the TRMM satellite and Kwajalein oceanic validation site. J. Appl. Meteor., 39 , 21512164.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., , R. F. Adler, , and G. R. North, 1988: A proposed Tropical Rainfall Measuring Mission (TRMM) satellite. Bull. Amer. Meteor. Soc., 69 , 278295.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., , C. Kummerow, , W-K. Tao, , and R. F. Adler, 1996: On the Tropical Rainfall Measuring Mission (TRMM). Meteor. Atmos. Phys., 60 , 1936.

    • Search Google Scholar
    • Export Citation
  • Smith, E. A., , C. Kummerow, , and A. Mugnai, 1994a: The emergence of inversion-type precipitation profile algorithms for estimation of precipitation from satellite microwave measurements. Remote Sens. Rev., 11 , 211242.

    • Search Google Scholar
    • Export Citation
  • Smith, E. A., , X. Xiang, , A. Mugnai, , R. Hood, , and R. W. Spencer, 1994b: Behavior of an inversion-based precipitation retrieval algorithm with high-resolution AMPR measurements including a low-frequency 10.7-GHz channel. J. Atmos. Oceanic Technol., 11 , 858873.

    • Search Google Scholar
    • Export Citation
  • Smith, E. A., , X. Xiang, , A. Mugnai, , and G. J. Tripoli, 1994c: Design of an inversion-based precipitation profile retrieval algorithm using an explicit cloud model for initial guess microphysics. Meteor. Atmos. Phys., 54 , 5378.

    • Search Google Scholar
    • Export Citation
  • Smith, E. A., and Coauthors, 1998: Results of WetNet PIP-2 Project. J. Atmos. Sci., 55 , 14831536.

  • Spencer, R. W., 1986: A satellite passive 37-GHz scattering-based method for measuring oceanic rain rates. J. Climate Appl. Meteor., 25 , 754766.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., , W. S. Olson, , W. Rongzhang, , D. W. Martin, , J. A. Weinman, , and D. A. Santek, 1983: Heavy thunderstorms observed over land by the Nimbus 7 Scanning Multichannel Microwave Radiometer. J. Climate Appl. Meteor., 22 , 10411046.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., , H. M. Goodman, , and R. E. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I. Part I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6 , 254273.

    • Search Google Scholar
    • Export Citation
  • Vila, D., , R. Ferraro, , and R. Joyce, 2007: Evaluation and improvement of AMSU precipitation retrievals. J. Geophys. Res., 112 .D20119, doi:10.1029/2007JD008617.

    • Search Google Scholar
    • Export Citation
  • Weng, F., , L. Zhao, , R. Ferraro, , G. Poe, , X. Li, , and N. Grody, 2003: Advanced microwave sounding unit cloud and precipitation algorithms. Radio Sci., 38 .8068, doi:10.1029/2002RS002679.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T. T., 1986: Some comments on passive microwave measurement of rain. Bull. Amer. Meteor. Soc., 67 , 12261232.

  • Wilheit, T. T., , A. T. C. Chang, , S. C. V. Rao, , E. B. Rodgers, , and J. S. Theon, 1977: A satellite technique for quantitatively mapping rainfall rates over the oceans. J. Appl. Meteor., 16 , 551560.

    • Search Google Scholar
    • Export Citation
  • Yang, S., , W. S. Olson, , J-J. Wang, , T. L. Bell, , E. A. Smith, , and C. D. Kummerow, 2006: Precipitation and latent heating distributions from satellite passive microwave radiometry. Part II: Evaluation of estimates using independent data. J. Appl. Meteor. Climatol., 45 , 721739.

    • Search Google Scholar
    • Export Citation
  • Zhao, L., , and F. Weng, 2002: Retrieval of ice cloud parameters using the Advanced Microwave Sounding Unit. J. Appl. Meteor., 41 , 384395.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 21 21 0
PDF Downloads 3 3 0

Evaluation of Coincident Passive Microwave Rainfall Estimates Using TRMM PR and Ground Measurements as References

View More View Less
  • 1 Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland
© Get Permissions
Restricted access

Abstract

This study compares instantaneous rainfall estimates provided by the current generation of retrieval algorithms for passive microwave sensors using retrievals from the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and merged surface radar and gauge measurements over the continental United States as references. The goal is to quantitatively assess surface rain retrievals from cross-track scanning microwave humidity sounders relative to those from conically scanning microwave imagers. The passive microwave sensors included in the study are three operational sounders—the Advanced Microwave Sounding Unit-B (AMSU-B) instruments on the NOAA-15, -16, and -17 satellites—and five imagers: the TRMM Microwave Imager (TMI), the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) instrument on the Aqua satellite, and the Special Sensor Microwave Imager (SSM/I) instruments on the Defense Meteorological Satellite Program (DMSP) F-13, -14, and -15 satellites. The comparisons with PR data are based on “coincident” observations, defined as instantaneous retrievals (spatially averaged to 0.25° latitude and 0.25° longitude) within a 10-min interval collected over a 20-month period from January 2005 to August 2006. Statistics of departures of these coincident retrievals from reference measurements as given by the TRMM PR or ground radar and gauges are computed as a function of rain intensity over land and oceans. Results show that over land AMSU-B sounder rain retrievals are comparable in quality to those from conically scanning radiometers for instantaneous rain rates between 1.0 and 10.0 mm h−1. This result holds true for comparisons using either TRMM PR estimates over tropical land areas or merged ground radar/gauge measurements over the continental United States as the reference. Over tropical oceans, the standard deviation errors are comparable between imager and sounder retrievals for rain intensities above 5 mm h−1, below which the imagers are noticeably better than the sounders; systematic biases are small for both imagers and sounders. The results of this study suggest that in planning future satellite missions for global precipitation measurement, cross-track scanning microwave humidity sounders on operational satellites may be used to augment conically scanning microwave radiometers to provide improved temporal sampling over land without degradation in the quality of precipitation estimates.

* Additional affiliation: Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore County, Baltimore, Maryland

Corresponding author address: Dr. Xin Lin, NASA Goddard Space Flight Center, Code 610.1 Greenbelt, MD 20771. Email: xin.lin-1@nasa.gov

Abstract

This study compares instantaneous rainfall estimates provided by the current generation of retrieval algorithms for passive microwave sensors using retrievals from the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and merged surface radar and gauge measurements over the continental United States as references. The goal is to quantitatively assess surface rain retrievals from cross-track scanning microwave humidity sounders relative to those from conically scanning microwave imagers. The passive microwave sensors included in the study are three operational sounders—the Advanced Microwave Sounding Unit-B (AMSU-B) instruments on the NOAA-15, -16, and -17 satellites—and five imagers: the TRMM Microwave Imager (TMI), the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) instrument on the Aqua satellite, and the Special Sensor Microwave Imager (SSM/I) instruments on the Defense Meteorological Satellite Program (DMSP) F-13, -14, and -15 satellites. The comparisons with PR data are based on “coincident” observations, defined as instantaneous retrievals (spatially averaged to 0.25° latitude and 0.25° longitude) within a 10-min interval collected over a 20-month period from January 2005 to August 2006. Statistics of departures of these coincident retrievals from reference measurements as given by the TRMM PR or ground radar and gauges are computed as a function of rain intensity over land and oceans. Results show that over land AMSU-B sounder rain retrievals are comparable in quality to those from conically scanning radiometers for instantaneous rain rates between 1.0 and 10.0 mm h−1. This result holds true for comparisons using either TRMM PR estimates over tropical land areas or merged ground radar/gauge measurements over the continental United States as the reference. Over tropical oceans, the standard deviation errors are comparable between imager and sounder retrievals for rain intensities above 5 mm h−1, below which the imagers are noticeably better than the sounders; systematic biases are small for both imagers and sounders. The results of this study suggest that in planning future satellite missions for global precipitation measurement, cross-track scanning microwave humidity sounders on operational satellites may be used to augment conically scanning microwave radiometers to provide improved temporal sampling over land without degradation in the quality of precipitation estimates.

* Additional affiliation: Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore County, Baltimore, Maryland

Corresponding author address: Dr. Xin Lin, NASA Goddard Space Flight Center, Code 610.1 Greenbelt, MD 20771. Email: xin.lin-1@nasa.gov

Save