Constructing Retrospective Gridded Daily Precipitation and Temperature Datasets for the Conterminous United States

Mauro Di Luzio Blackland Research Center, Texas Agricultural Experiment Station, Texas A&M University System, Temple, Texas

Search for other papers by Mauro Di Luzio in
Current site
Google Scholar
PubMed
Close
,
Gregory L. Johnson West National Technology Support Center, U.S. Department of Agriculture Natural Resources Conservation Service, Portland, Oregon

Search for other papers by Gregory L. Johnson in
Current site
Google Scholar
PubMed
Close
,
Christopher Daly PRISM Group, Department of Geosciences, and College of Oceanographic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Christopher Daly in
Current site
Google Scholar
PubMed
Close
,
Jon K. Eischeid Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado

Search for other papers by Jon K. Eischeid in
Current site
Google Scholar
PubMed
Close
, and
Jeffrey G. Arnold Grassland Research Laboratory, U.S. Department of Agriculture Agricultural Research Service, Temple, Texas

Search for other papers by Jeffrey G. Arnold in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This paper presents and evaluates a method for the construction of long-range and wide-area temporal spatial datasets of daily precipitation and temperature (maximum and minimum). This method combines the interpolation of daily ratios/fractions derived from ground-based meteorological station records and respective fields of monthly estimates. Data sources for the described implementation over the conterminous United States (CONUS) are two independent and quality-controlled inputs: 1) an enhanced compilation of daily observations derived from the National Climatic Data Center digital archives and 2) the Parameter–Elevation Regressions on Independent Slopes Model (PRISM) maps. The results of this study show that this nonconventional interpolation preserves the spatial and temporal distribution of both the PRISM maps (monthly, topography-sensitive patterns) and the original daily observations. Statistics of a preliminary point comparison with the observed values at high-quality and independent reference sites show a reasonable agreement and a noticeable improvement over the nearest station method in orographically sensitive areas. The implemented datasets provide daily precipitation and temperature values at 2.5-min (around 4 km) resolution for 1960–2001. Combining seamless spatial and temporal coverage and topographic sensitivity characteristics, the datasets offer the potential for supporting current and future regional and historical hydrologic assessments over the CONUS.

Corresponding author address: Mauro Di Luzio, TAES–Blackland Research Center, 720 E. Blackland Rd., Temple, TX 76502. Email: mdiluzio@brc.tamus.edu

Abstract

This paper presents and evaluates a method for the construction of long-range and wide-area temporal spatial datasets of daily precipitation and temperature (maximum and minimum). This method combines the interpolation of daily ratios/fractions derived from ground-based meteorological station records and respective fields of monthly estimates. Data sources for the described implementation over the conterminous United States (CONUS) are two independent and quality-controlled inputs: 1) an enhanced compilation of daily observations derived from the National Climatic Data Center digital archives and 2) the Parameter–Elevation Regressions on Independent Slopes Model (PRISM) maps. The results of this study show that this nonconventional interpolation preserves the spatial and temporal distribution of both the PRISM maps (monthly, topography-sensitive patterns) and the original daily observations. Statistics of a preliminary point comparison with the observed values at high-quality and independent reference sites show a reasonable agreement and a noticeable improvement over the nearest station method in orographically sensitive areas. The implemented datasets provide daily precipitation and temperature values at 2.5-min (around 4 km) resolution for 1960–2001. Combining seamless spatial and temporal coverage and topographic sensitivity characteristics, the datasets offer the potential for supporting current and future regional and historical hydrologic assessments over the CONUS.

Corresponding author address: Mauro Di Luzio, TAES–Blackland Research Center, 720 E. Blackland Rd., Temple, TX 76502. Email: mdiluzio@brc.tamus.edu

Save
  • Arnold, J. G., R. Srinivasan, R. S. Muttiah, and J. R. Williams, 1998: Large area hydrologic modeling and assessment. Part I: Model development. J. Amer. Water Resour. Assoc., 34 , 7389.

    • Search Google Scholar
    • Export Citation
  • Bosch, D. D., J. M. Sheridan, and F. M. Davis, 1999: Rainfall characteristics and spatial correlation for the Georgia Coastal Plain. Trans. ASAE, 42 , 16371644.

    • Search Google Scholar
    • Export Citation
  • Courault, D., and P. Monestiez, 1999: Spatial interpolation of air temperature according to atmospheric circulation patterns in southeast France. Int. J. Climatol., 19 , 365378.

    • Search Google Scholar
    • Export Citation
  • Daly, C., cited. 2002: Variable influence of terrain on precipitation patterns: Delineation and use of effective terrain height in PRISM. [Available online at http://www.ocs.orst.edu/pub/prism/docs/effectiveterrain-daly.pdf.].

  • Daly, C., 2006: Guidelines for assessing the suitability of spatial climate data sets. Int. J. Climatol., 26 , 707721.

  • Daly, C., and G. L. Johnson, 1999: PRISM spatial climate layers: Their development and use. Short Course on Topics in Applied Climatology, Course Material, 79th Annual Meeting of the Amer. Meteor. Soc., Dallas, TX, Amer. Meteor. Soc., 49 pp. [Available online at http://prism.oregonstate.edu/pub/prism/docs/prisguid.pdf.].

  • Daly, C., and D. B. Hannaway, 2005: Visualizing China’s Future Agriculture Climate, Soils, and Suitability Maps for Improved Decision-Making. Oregon State University, 296 pp.

    • Search Google Scholar
    • Export Citation
  • Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33 , 140158.

    • Search Google Scholar
    • Export Citation
  • Daly, C., G. H. Taylor, and W. P. Gibson, 1997: The PRISM approach to mapping precipitation and temperature. Preprints, 10th Conf. on Applied Climatology, Reno, NV, Amer. Meteor. Soc., 10–12.

  • Daly, C., G. H. Taylor, W. P. Gibson, T. W. Parzybok, G. L. Johnson, and P. A. Pasteris, 2001: High-quality spatial climate data sets for the United States and beyond. Trans. ASAE, 43 , 19571962.

    • Search Google Scholar
    • Export Citation
  • Daly, C., W. P. Gibson, G. H. Taylor, G. L. Johnson, and P. A. Pasteris, 2002: A knowledge-based approach to the statistical mapping of climate. Climate Res., 22 , 99113.

    • Search Google Scholar
    • Export Citation
  • Daly, C., E. H. Helmer, and M. Quinones, 2003: Mapping the climate of Puerto Rico, Vieques, and Culebra. Int. J. Climatol., 23 , 13591381.

    • Search Google Scholar
    • Export Citation
  • Daly, C., W. P. Gibson, M. Doggett, J. Smith, and G. Taylor, 2004: Up-to-date monthly climate maps for the conterminous United States. Preprints, 14th Conf. on Applied Climatology, Seattle, WA, Amer. Meteor. Soc., CD-ROM, P5.1.

  • Eischeid, J. K., C. B. Baker, T. R. Karl, and H. F. Diaz, 1995: The quality control of long-term climatological data using objective data analysis. J. Appl. Meteor., 34 , 27872795.

    • Search Google Scholar
    • Export Citation
  • Eischeid, J. K., P. A. Pasteris, H. F. Diaz, M. S. Plantico, and N. J. Lott, 2000: Creating a serially complete, national daily time series of temperature and precipitation for the western United States. J. Appl. Meteor., 39 , 15801591.

    • Search Google Scholar
    • Export Citation
  • Fulton, R. A., J. P. Breidenbach, D-J. Seo, D. A. Miller, and T. O’Bannon, 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13 , 377395.

    • Search Google Scholar
    • Export Citation
  • Garen, D. C., G. L. Johnson, and C. L. Hanson, 1994: Mean areal precipitation for daily hydrologic modeling in mountainous regions. Water Resour. Bull., 30 , 481491.

    • Search Google Scholar
    • Export Citation
  • Gibson, W. P., C. Daly, T. Kittel, D. Nychka, C. Johns, N. Rosenbloom, A. McNab, and G. Taylor, 2002: Development of a 103-year high-resolution climate data set for the conterminous United States. Proc. 13th Conf. on Applied Climatology, Portland, OR, Amer. Meteor. Soc., 181–183.

  • Groisman, P. Ya, and D. R. Legates, 1994: The accuracy of United States precipitation data. Bull. Amer. Meteor. Soc., 75 , 215227.

  • Hamlet, A. F., and D. P. Lettenmaier, 2005: Production of temporally consistent gridded precipitation and temperature fields for the continental United States. J. Hydrometeor., 6 , 330336.

    • Search Google Scholar
    • Export Citation
  • Hannaway, D. B., and Coauthors, 2005: Forage species suitability mapping for China using topographic, climatic and soils spatial data and quantitative plant tolerances. Agric. Sci. China, 4 , 660667.

    • Search Google Scholar
    • Export Citation
  • Hewitson, B. C., and R. G. Crane, 2005: Gridded area-averaged daily precipitation via conditional interpolation. J. Climate, 18 , 4157.

    • Search Google Scholar
    • Export Citation
  • Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis, 2005: Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 25 , 19651978.

    • Search Google Scholar
    • Export Citation
  • Hubbard, K. G., 1994: Spatial variability of daily weather variables in the high plains of the USA. Agric. For. Meteor., 68 , 2941.

  • Johns, C. J., D. Nychka, T. G. F. Kittel, and C. Daly, 2003: Infilling sparse records of spatial fields. J. Amer. Stat. Assoc., 98 , 796806.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. L., C. Daly, G. H. Taylor, and C. L. Hanson, 2000: Spatial variability and interpolation of stochastic weather simulation model parameters. J. Appl. Meteor., 39 , 778796.

    • Search Google Scholar
    • Export Citation
  • Kittel, T. G. F., and Coauthors, 2004: VEMAP Phase 2 bioclimatic database. I. Gridded historical (20th century) climate for modeling ecosystem dynamics across the conterminous USA. Climate Res., 27 , 151170.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., G. J. Ciah, J. R. McCollum, and C. Bacotiu, 2000: Initial validation of the Global Precipitation Climatology Project monthly rainfall over the United States. J. Appl. Meteor., 39 , 10711086.

    • Search Google Scholar
    • Export Citation
  • Kurtzman, D., and R. Kadmon, 1999: Mapping of temperature variables in Israel: A comparison of different interpolation methods. Climate Res., 13 , 3343.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., A. W. Wood, J. C. Adam, D. P. Lettenmaier, and B. Nijssen, 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15 , 32373251.

    • Search Google Scholar
    • Export Citation
  • Mausbach, M. J., and A. R. Dedrick, 2004: The length we go: Measuring environmental benefits of conservation practices. J. Soil Water Conserv., 59 , 96103.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., J. A. Jones, T. Iguchi, K. Okamoto, and J. Kwiatkowski, 2001: Statistical methods of estimating average rainfall over large space–timescales using data from the TRMM precipitation radar. J. Appl. Meteor., 40 , 568585.

    • Search Google Scholar
    • Export Citation
  • New, M., M. Hulme, and P. Jones, 1999: Representing twentieth-century space–time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology. J. Climate, 12 , 829856.

    • Search Google Scholar
    • Export Citation
  • NOAA-NCDC, 2002: The climate atlas of the United States, version 2.0. National Oceanic and Atmospheric Administration, 20023 pp., CD-ROM. [Available online at http://www.ncdc.noaa.gov/oa/about/cdrom/climatls2/info/atlasad.html.].

  • Pardo-Iguzquiza, E., 1998: Comparison of geostatistical methods for estimating the areal average climatological rainfall mean using data on precipitation and topography. Int. J. Climatol., 18 , 10311047.

    • Search Google Scholar
    • Export Citation
  • Piper, S. C., and E. F. Stewart, 1996: A gridded global data set of daily temperature and precipitation for terrestrial biosphere modeling. Global Biogeochem. Cycles, 10 , 757782.

    • Search Google Scholar
    • Export Citation
  • Plantico, M. S., L. A. Goss, C. Daly, and G. Taylor, 2000: A new U.S. climate atlas. Proc. 12th Conf. on Applied Climatology, Asheville, NC, Amer. Meteor. Soc., 247–248.

  • Prudhomme, C., and D. W. Reed, 1999: Mapping extreme rainfall in a mountainous region using geostatistical techniques: A case study in Scotland. Int. J. Climatol., 19 , 13371356.

    • Search Google Scholar
    • Export Citation
  • Seaber, P., F. P. Kapinos, and G. L. Knapp, 1987: Hydrologic unit maps. U.S. Department of Interior U.S. Geological Survey, Water Supply Paper 2294, 63 pp.

  • Seo, D-J., W. F. Krajewski, and D. S. Bowles, 1990: Stochastic interpolation of rainfall data from raingages and radar using cokriging: 1. Design of experiments. Water Resour. Res., 26 , 469477.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. J., G. L. Hufford, C. Daly, J. S. Berg, and M. D. Fleming, 2005: Comparing maps of mean monthly surface temperature and precipitation for Alaska and adjacent areas of Canada produced by two different methods. Arctic, 58 , 137161.

    • Search Google Scholar
    • Export Citation
  • Slaughter, C. W., and C. W. Richardson, 2000: Long-term watershed research in USDA—Agricultural Research Service. Water Resour. IMPACT, 2 , 2831.

    • Search Google Scholar
    • Export Citation
  • Steeves, P., and D. Nebert, 1994: 1:250,000-scale hydrologic units of the United States. U.S. Geological Service Open-File Rep. 94-0236. [Available online at http://water.usgs.gov/GIS/metadata/usgswrd/XML/huc250k.xml.].

  • Steiner, M., J. A. Smith, S. Burges, C. V. Alonso, and R. W. Darden, 1999: Effect of bias adjustment and rain gauge data quality control on radar rainfall estimates. Water Resour. Res., 35 , 24872503.

    • Search Google Scholar
    • Export Citation
  • Tabios, G. Q., and J. D. Salas, 1985: A comparative analysis of techniques for spatial interpolation of precipitation. Water Resour. Bull., 21 , 365380.

    • Search Google Scholar
    • Export Citation
  • Thiessen, A. H., 1911: Precipitation averages for large areas. Mon. Wea. Rev., 39 , 10821084.

  • Thornton, P. E., S. W. Running, and M. A. White, 1997: Generating surfaces of daily meteorological variables over large regions of complex terrain. J. Hydrol., 190 , 214251.

    • Search Google Scholar
    • Export Citation
  • USDA-NRCS, 1998: PRISM climate mapping project—Precipitation. Mean Monthly and Annual Precipitation Digital Files for the Continental U.S., USDA-NRCS, CD-ROM. [Available from the USDA-NRCS National Cartography and Geospatial Center, 501 West Felix St., Bldg. 23, Fort Worth TX 76115.].

  • Watson, D. F., and G. M. Philip, 1985: A refinement of inverse distance weighted interpolation. Geo-Processing, 2 , 315327.

  • Widmann, M., and C. S. Bretherton, 2000: Validation of mesoscale precipitation in the NCEP reanalysis using a new gridcell dataset for the northwestern United States. J. Climate, 13 , 19361950.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., and S. M. Robeson, 1995: Climatologically aided interpolation (CAI) of terrestrial air temperature. Int. J. Climatol., 15 , 221229.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., P. Fabian, M. Winterhalter, and M. Zhao, 2001: Forest climatology: Estimation and use of daily climatological data for Bavaria, Germany. Agric. For. Meteor., 106 , 87103.

    • Search Google Scholar
    • Export Citation
  • Zhu, H., T. Luo, and C. Daly, 2003: Validation of simulated grid data sets of China’s temperature and precipitation with high spatial resolution (in Chinese with English abstract). Geogr. Res., 22 , 349359.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1921 759 302
PDF Downloads 838 207 15