Composite Atmospheric Environments of Jet Contrail Outbreaks for the United States

Andrew M. Carleton Department of Geography, and Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Andrew M. Carleton in
Current site
Google Scholar
PubMed
Close
,
David J. Travis Department of Geography and Geology, University of Wisconsin—Whitewater, Whitewater, Wisconsin

Search for other papers by David J. Travis in
Current site
Google Scholar
PubMed
Close
,
Kara Master College of Earth and Mineral Sciences, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Kara Master in
Current site
Google Scholar
PubMed
Close
, and
Sajith Vezhapparambu Department of Geosciences, University of Missouri—Kansas City, Kansas City, Missouri

Search for other papers by Sajith Vezhapparambu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The cirrus-level “condensation trails” (contrails) produced by jet aircraft are considered to influence surface climate and its recent changes. To reveal the synoptic atmospheric environments typically associated with multiple co-occurrences of contrails occurring in otherwise clear or partly cloudy skies (outbreaks) for the United States, and ultimately to assist in forecasting these events, a composite (i.e., multicase average) “synoptic climatology” at regional scales is developed for the midseason months (January, April, July, October) of 2000–02. The NCEP–NCAR reanalysis data that emphasize upper-troposphere (UT) variables are allied with manually identified outbreaks appearing on satellite Advanced Very High Resolution Radiometer digital data, using a geographic information system. The highest frequencies of outbreaks by far occur in the Midwest (32.6% of all-U.S. total), followed by the Northeast (17.6%) and Southeast (17.2%). In these regions, all of which have a high density of jet air traffic, an additional 2% cirrus cloud coverage from outbreak-related contrails is inferred. Large interannual and interseasonal variations in contrail outbreak frequencies support the role of meteorological variations. For most regions, the outbreak-associated synoptic circulation composite conditions involve UT ridging and a higher and colder tropopause than the climatological average; meridionally enhanced gradients of the UT vertical motion, located between sinking air to the east (in the ridge) and rising air to the west, in advance of a trough; similarly strong gradients of mid–upper-troposphere humidity, comprising dry air located to the east and moist air to the west; and horizontal speed shear ahead of an advancing jet stream. Notwithstanding, there is a geography (i.e., areal differentiation) to contrail outbreak environments: composites for the Northeast suggest an influence of land–sea contrasts on synoptic systems and, therefore, on contrail outbreaks. For the Northwest, there is evident a greater impact of horizontal wind shear contrasted with other regions. The synoptic climatology results are supported by the all-U.S. averages of contrail outbreak UT conditions [climate diagnostics (CDNs)] previously determined for early–mid-September periods of 1995–2001. Moreover, a comparison of these CDNs with those derived for nearby thick natural clouds, including cirrus, helps to clarify their different synoptic associations: the UT conditions typical of thick clouds represent an intensification of those associated with contrail outbreaks and include the greater upward vertical motion, moister air, and stronger westerly winds characteristic of a trough. Given the location of most contrail outbreaks downstream of multilayered cloud systems, contrails may help to extend the “natural” cirrus and cirrostratus spatial coverage.

Corresponding author address: Andrew Carleton, Department of Geography, and Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, PA 16802. Email: carleton@essc.psu.edu

Abstract

The cirrus-level “condensation trails” (contrails) produced by jet aircraft are considered to influence surface climate and its recent changes. To reveal the synoptic atmospheric environments typically associated with multiple co-occurrences of contrails occurring in otherwise clear or partly cloudy skies (outbreaks) for the United States, and ultimately to assist in forecasting these events, a composite (i.e., multicase average) “synoptic climatology” at regional scales is developed for the midseason months (January, April, July, October) of 2000–02. The NCEP–NCAR reanalysis data that emphasize upper-troposphere (UT) variables are allied with manually identified outbreaks appearing on satellite Advanced Very High Resolution Radiometer digital data, using a geographic information system. The highest frequencies of outbreaks by far occur in the Midwest (32.6% of all-U.S. total), followed by the Northeast (17.6%) and Southeast (17.2%). In these regions, all of which have a high density of jet air traffic, an additional 2% cirrus cloud coverage from outbreak-related contrails is inferred. Large interannual and interseasonal variations in contrail outbreak frequencies support the role of meteorological variations. For most regions, the outbreak-associated synoptic circulation composite conditions involve UT ridging and a higher and colder tropopause than the climatological average; meridionally enhanced gradients of the UT vertical motion, located between sinking air to the east (in the ridge) and rising air to the west, in advance of a trough; similarly strong gradients of mid–upper-troposphere humidity, comprising dry air located to the east and moist air to the west; and horizontal speed shear ahead of an advancing jet stream. Notwithstanding, there is a geography (i.e., areal differentiation) to contrail outbreak environments: composites for the Northeast suggest an influence of land–sea contrasts on synoptic systems and, therefore, on contrail outbreaks. For the Northwest, there is evident a greater impact of horizontal wind shear contrasted with other regions. The synoptic climatology results are supported by the all-U.S. averages of contrail outbreak UT conditions [climate diagnostics (CDNs)] previously determined for early–mid-September periods of 1995–2001. Moreover, a comparison of these CDNs with those derived for nearby thick natural clouds, including cirrus, helps to clarify their different synoptic associations: the UT conditions typical of thick clouds represent an intensification of those associated with contrail outbreaks and include the greater upward vertical motion, moister air, and stronger westerly winds characteristic of a trough. Given the location of most contrail outbreaks downstream of multilayered cloud systems, contrails may help to extend the “natural” cirrus and cirrostratus spatial coverage.

Corresponding author address: Andrew Carleton, Department of Geography, and Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, PA 16802. Email: carleton@essc.psu.edu

Save
  • Angell, J. K., 1990: Variation in United States cloudiness and sunshine duration between 1950 and the drought year of 1988. J. Climate, 3 , 296308.

    • Search Google Scholar
    • Export Citation
  • Appleman, H., 1953: The formation of exhaust condensation trails by jet aircraft. Bull. Amer. Meteor. Soc., 34 , 1420.

  • Atlas, D., Z. Wang, and D. P. Duda, 2006: Contrails to cirrus—Morphology, microphysics, and radiative properties. J. Appl. Meteor. Climatol., 45 , 519.

    • Search Google Scholar
    • Export Citation
  • BACK Aviation Solutions, cited. 2005: OAG schedules database, New Haven, CT. [Available online at http://www.backaviation.com/Information_Services/Products/schedules.htm.].

  • Bakan, S., M. Betancor, V. Gayler, and H. Grassl, 1994: Contrail frequency over Europe from NOAA-satellite images. Ann. Geophys., 12 , 962968.

    • Search Google Scholar
    • Export Citation
  • Barry, R. G., 1970: A framework for climatological research with particular reference to scale concepts. Trans. Inst. Brit. Geogr., 49 , 6170.

    • Search Google Scholar
    • Export Citation
  • Barry, R. G., and A. M. Carleton, 2001: Synoptic and Dynamic Climatology. Routledge, 620 pp.

  • Boucher, O., 1999: Air traffic may increase cirrus cloudiness. Nature, 397 , 3031.

  • Busen, R., and U. Schumann, 1995: Visible contrail formation from fuels with different sulfur contents. Geophys. Res. Lett., 22 , 13571360.

    • Search Google Scholar
    • Export Citation
  • Businger, S., D. I. Knapp, and G. F. Watson, 1990: Storm following climatology of precipitation associated with winter cyclones originating over the Gulf of Mexico. Wea. Forecasting, 5 , 378403.

    • Search Google Scholar
    • Export Citation
  • Cardinali, C., L. Isaksen, and E. Andersson, 2003: Use and impact of automated aircraft data in a global 4DVAR data assimilation system. Mon. Wea. Rev., 131 , 18651877.

    • Search Google Scholar
    • Export Citation
  • Carleton, A. M., 1999: Methodology in climatology. Ann. Assoc. Amer. Geogr., 89 , 713735.

  • Carleton, A. M., and P. J. Lamb, 1986: Jet contrails and cirrus cloud: A feasibility study employing high-resolution satellite imagery. Bull. Amer. Meteor. Soc., 67 , 301309.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1991: Mid-Latitude Weather Systems. HarperCollins Academic, 507 pp.

  • Changnon, S. A., 1981: Midwestern cloud, sunshine and temperature trends since 1901: Possible evidence of jet contrail effects. J. Appl. Meteor., 20 , 496508.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., R. G. Semonin, and W. M. Wendland, 1980: Effect of contrail cirrus on surface weather conditions in the Midwest: Phase I. Illinois State Water Survey Final Rep. of NSF Grant ATM 78-09568, 141 pp. [Available from Atmospheric Sciences Division, Illinois State Water Survey, 2204 Griffith Dr., Champaign, IL 61820-7495.].

  • Chlond, A., 1998: Large-eddy simulation of contrails. J. Atmos. Sci., 55 , 796819.

  • Dee, D. P., and A. M. Da Silva, 2003: The choice of variable for atmospheric moisture analysis. Mon. Wea. Rev., 131 , 155171.

  • DeGrand, J. Q., A. M. Carleton, D. J. Travis, and P. J. Lamb, 2000: A satellite-based climatic description of jet aircraft contrails and associations with atmospheric conditions, 1977–79. J. Appl. Meteor., 39 , 14341459.

    • Search Google Scholar
    • Export Citation
  • Del Guasta, M., and E. Vallar, 2003: In-cloud variability of LIDAR depolarization of polar and midlatitude cirrus. Geophys. Res. Lett., 30 .1578, doi:10.1029/2003GL017163.

    • Search Google Scholar
    • Export Citation
  • Detwiler, A., and H. Cho, 1982: Reduction of residential heating and cooling requirements possible through atmospheric seeding with ice-forming nuclei. J. Appl. Meteor., 21 , 10451047.

    • Search Google Scholar
    • Export Citation
  • Detwiler, A., and R. Pratt, 1984: Clear-air seeding: Opportunities and strategies. J. Wea. Modif., 16 , 4660.

  • Duda, D. P., J. D. Spinhirne, and W. D. Hart, 1998: Retrieval of contrail microphysical properties during SUCCESS by the split-window method. Geophys. Res. Lett., 25 , 11491152.

    • Search Google Scholar
    • Export Citation
  • Duda, D. P., P. Minnis, and L. Nguyen, 2001: Estimates of cloud radiative forcing in contrail clusters using GOES imagery. J. Geophys. Res., 106 , D5. 49274938.

    • Search Google Scholar
    • Export Citation
  • Duda, D. P., P. Minnis, L. Nguyen, and R. Palikonda, 2004: A case study of the development of contrail clusters over the Great Lakes. J. Atmos. Sci., 61 , 11321146.

    • Search Google Scholar
    • Export Citation
  • Duda, D. P., P. Minnis, and R. Palikonda, 2005: Estimated contrail frequency and coverage over the contiguous United States from numerical weather prediction analyses and flight track data. Meteor. Z., 14 , 537548.

    • Search Google Scholar
    • Export Citation
  • Elliott, W. P., and D. J. Gaffen, 1991: On the utility of radiosonde humidity archives for climate studies. Bull. Amer. Meteor. Soc., 72 , 15071520.

    • Search Google Scholar
    • Export Citation
  • Engelstad, M., S. K. Sengupta, T. Lee, and R. M. Welch, 1992: Automated detection of jet contrails using the AVHRR split window. Int. J. Remote Sens., 13 , 13911412.

    • Search Google Scholar
    • Export Citation
  • Fichter, C., S. Marquart, R. Sausen, and D. S. Lee, 2005: The impact of cruise altitude on contrails and related radiative forcing. Meteor. Z., 14 , 563572.

    • Search Google Scholar
    • Export Citation
  • Fortuin, J. P. F., R. Van Dorlund, W. M. F. Wauben, and H. Kelder, 1995: Greenhouse effects of aircraft emissions as calculated by a radiative transfer model. Ann. Geophys., 13 , 413418.

    • Search Google Scholar
    • Export Citation
  • Freudenthaler, V., F. Homburg, and H. Jäger, 1995: Contrail observations by ground-based scanning lidar: Cross-sectional growth. Geophys. Res. Lett., 22 , 35013504.

    • Search Google Scholar
    • Export Citation
  • Garand, L., C. Grassotti, J. Halle, and G. L. Klein, 1992: On differences in radiosonde humidity-reporting practices and their implications for numerical weather prediction and remote sensing. Bull. Amer. Meteor. Soc., 73 , 14171423.

    • Search Google Scholar
    • Export Citation
  • Garber, D. P., P. Minnis, and P. K. Costulis, 2005: A commercial flight track database for upper tropospheric aircraft emission studies over the USA and southern Canada. Meteor. Z., 14 , 445452.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., E. J. Fetzer, A. Eldering, and F. W. Irion, 2006: The global distribution of supersaturation in the upper troposphere from the Atmospheric Infrared Sounder. J. Climate, 19 , 60896103.

    • Search Google Scholar
    • Export Citation
  • Gierens, K., 1996: Numerical simulations of persistent contrails. J. Atmos. Sci., 53 , 33333348.

  • Gierens, K., R. Sausen, and U. Schumann, 1999: A diagnostic study of the global distribution of contrails. Part II: Future air traffic scenarios. Theor. Appl. Climatol., 63 , 19.

    • Search Google Scholar
    • Export Citation
  • Gierens, K., U. Schumann, M. Helten, H. Smit, and P-H. Wang, 2000: Ice-supersaturated regions and subvisual cirrus in the northern midlatitude upper troposphere. J. Geophys. Res., 105 , 2274322753.

    • Search Google Scholar
    • Export Citation
  • Gothe, M. B., and H. Grassl, 1993: Satellite remote sensing of the optical depth and mean crystal size of thin cirrus and contrails. Theor. Appl. Climatol., 48 , 101113.

    • Search Google Scholar
    • Export Citation
  • Grassl, H., 1990: Possible climatic effects of contrails and additional water vapour. Air Traffic and the Environment—Background, Tendencies and Potential Global Atmospheric Effects, U. Schumann, Ed., Springer-Verlag, 124–137.

    • Search Google Scholar
    • Export Citation
  • Hanson, H. M., and D. M. Hanson, 1995: A reexamination of the formation of exhaust condensation trails by jet aircraft. J. Appl. Meteor., 34 , 24002405.

    • Search Google Scholar
    • Export Citation
  • Hanson, H. M., and D. M. Hanson, 1998: The application of the revised algorithm for the prediction of the formation of exhaust condensation trails by jet aircraft. J. Appl. Meteor., 37 , 436440.

    • Search Google Scholar
    • Export Citation
  • Harami, K., 1968: Utilization of condensation trails for weather forecasting. J. Meteor. Res. Japan, 20 , 5563.

  • Jackson, A., B. Newton, D. Hahn, and A. Bussey, 2001: Statistical contrail forecasting. J. Appl. Meteor., 40 , 269279.

  • Jasperson, W. H., G. D. Nastrom, R. E. Davis, and J. D. Holdeman, 1985: Variability of cloudiness at airline cruise altitudes from GASP measurements. J. Climate Appl. Meteor., 24 , 7482.

    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., A. S. Ackerman, D. E. Stevens, O. B. Toon, and P. Minnis, 1998: Spreading and growth of contrails in a sheared environment. J. Geophys. Res., 103 , 3155731567.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kästner, M., R. Meyer, and P. Wendling, 1999: Influence of weather conditions on the distribution of persistent contrails. Meteor. Appl., 6 , 261271.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V., and K. Sassen, 1998: Cloud model simulation of a contrail case study: Surface cooling against upper tropospheric warming. Geophys. Res. Lett., 25 , 21452148.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247267.

    • Search Google Scholar
    • Export Citation
  • Kristensson, A., J-F. Gayet, J. Strom, and F. Auriol, 2000: In situ observations of a reduction in effective crystal diameter in cirrus clouds near flight corridors. Geophys. Res. Lett., 27 , 681684.

    • Search Google Scholar
    • Export Citation
  • Langford, A. O., R. W. Portmann, J. S. Daniel, H. L. Miller, C. S. Eubank, S. Solomon, and E. G. Dutton, 2005: Retrieval of ice crystal effective diameters from ground-based near-infrared spectra of optically thin cirrus. J. Geophys. Res., 110 .D22201, doi:10.1029/2005JD005761.

    • Search Google Scholar
    • Export Citation
  • Lee, J. E., and S. D. Johnson, 1985: Expectancy of cloudless photographic days in the contiguous United States. Photogramm. Eng. Remote Sens., 51 , 18831891.

    • Search Google Scholar
    • Export Citation
  • Lee, T. F., 1989: Jet contrail identification using the AVHRR infrared split window. J. Appl. Meteor., 28 , 993995.

  • Liepert, B. G., 1997: Recent changes in solar radiation under cloudy conditions in Germany. Int. J. Climatol., 17 , 15811593.

  • Liou, K. N., 1992: Radiation and Cloud Processes in the Atmosphere: Theory, Observation and Modeling. Oxford University Press, 487 pp.

  • Liou, K. N., S. C. Ou, and G. Koenig, 1990: An investigation on the climatic effect of contrail cirrus. Air Traffic and the Environment—Background, Tendencies and Potential Global Atmospheric Effects, U. Schumann, Ed., Springer-Verlag, 154–169.

    • Search Google Scholar
    • Export Citation
  • Ludlam, F. H., 1980: Clouds and Storms: The Behavior and Effect of Water in the Atmosphere. Pennsylvania State University Press, 405 pp.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., S. Benson, and E. Vernon, 2006: Cirrus clouds and the large-scale atmospheric state: Relationships revealed by six years of ground-based data. J. Climate, 19 , 32573278.

    • Search Google Scholar
    • Export Citation
  • Machta, L., and T. Carpenter, 1971: Trends in high cloudiness at Denver and Salt Lake City. Man’s Impact on the Environment, W. H. Mathews, W. W. Kellogg, and G. D. Robinson, Eds., MIT Press, 410–415.

    • Search Google Scholar
    • Export Citation
  • Mannstein, H., and U. Schumann, 2005: Aircraft induced contrail cirrus over Europe. Meteor. Z., 14 , 549554.

  • Mannstein, H., R. Meyer, and P. Wendling, 1999: Operational detection of contrails from NOAA-AVHRR data. Int. J. Remote Sens., 20 , 16411660.

    • Search Google Scholar
    • Export Citation
  • Marquart, S., M. Ponater, F. Mager, and R. Sausen, 2003: Future development of contrail cover, optical depth, and radiative forcing: Impacts of increasing air traffic and climate change. J. Climate, 16 , 28902904.

    • Search Google Scholar
    • Export Citation
  • Martin, F. L., and V. V. Salomonson, 1970: Statistical characteristics of subtropical jet-stream features in terms of MRIR observations from Nimbus II. J. Appl. Meteor., 9 , 508520.

    • Search Google Scholar
    • Export Citation
  • Matuszko, D., 2002: Long-term course of cloud genera frequency in Cracow (1906–2000). Eos, Trans. Amer. Geophys. Union, 83 , 528.

  • Meerkötter, R., U. Schumann, D. R. Doelling, P. Minnis, T. Nakajima, and Y. Tsushima, 1999: Radiative forcing by contrails. Ann. Geophys., 17 , 10801094.

    • Search Google Scholar
    • Export Citation
  • Meyer, R., H. Mannstein, R. Meerkötter, U. Shumann, and P. Wendling, 2002: Regional radiative forcing by line-shaped contrails derived from satellite data. J. Geophys. Res., 107 .4104, doi:10.1029/2001JD000426.

    • Search Google Scholar
    • Export Citation
  • Miloshevich, L. M., H. Vömel, A. Paukkunen, A. J. Heymsfield, and S. J. Oltmans, 2001: Characterization and correction of relative humidity measurements from Vaisala RS80-A radiosondes at cold temperatures. J. Atmos. Oceanic Technol., 18 , 135156.

    • Search Google Scholar
    • Export Citation
  • Minnis, P. J., D. F. Young, D. P. Garber, L. Nguyen, W. L. Smith Jr., and R. Palikonda, 1998: Transformation of contrails into cirrus during SUCCESS. Geophys. Res. Lett., 25 , 11571160.

    • Search Google Scholar
    • Export Citation
  • Minnis, P. J., U. Schumann, D. R. Doelling, K. M. Gierens, and D. W. Fahey, 1999: Global distribution of contrail radiative forcing. Geophys. Res. Lett., 26 , 18531856.

    • Search Google Scholar
    • Export Citation
  • Minnis, P. J., J. K. Ayers, M. L. Nordeen, and S. P. Weaver, 2003: Contrail frequency over the United States from surface observations. J. Climate, 16 , 34473462.

    • Search Google Scholar
    • Export Citation
  • Minnis, P. J., J. K. Ayers, M. L. Nordeen, R. Palikonda, and D. Phan, 2004: Contrails, cirrus trends, and climate. J. Climate, 17 , 16711685.

    • Search Google Scholar
    • Export Citation
  • Minnis, P. J., R. Palikonda, B. J. Walter, J. K. Ayers, and H. Mannstein, 2005: Contrail properties over the eastern North Pacific from AVHRR data. Meteor. Z., 14 , 515523.

    • Search Google Scholar
    • Export Citation
  • Moninger, W. R., R. D. Mamrosh, and P. M. Pauley, 2003: Automated meteorological reports from commercial aircraft. Bull. Amer. Meteor. Soc., 84 , 203216.

    • Search Google Scholar
    • Export Citation
  • Moss, S. J., 1999: The testing and verification of contrail forecasts using pilot observations from aircraft. Meteor. Appl., 6 , 193200.

    • Search Google Scholar
    • Export Citation
  • Myhre, G., and F. Stordal, 2001: On the tradeoff of the solar and thermal infrared radiative impact of contrails. Geophys. Res. Lett., 28 , 31193122.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, S., J. Curtis, and G. Wendler, 2001: The influence of increased jet airline traffic on the amount of high level cloudiness in Alaska. Theor. Appl. Climatol., 68 , 197205.

    • Search Google Scholar
    • Export Citation
  • Newton, B., A. Jackson, D. Hahn, and A. Bussey, 1997: Statistical contrail forecasting. Preprints, Seventh Conf. on Aviation, Range, and Aerospace Meteorology, Long Beach, CA, Amer. Meteor. Soc., 463–468.

  • Nicodemus, M. L., and J. D. McQuigg, 1969: A simulation model for studying possible modification of surface temperature. J. Appl. Meteor., 8 , 199204.

    • Search Google Scholar
    • Export Citation
  • Ovarlez, J., P. Van Velthoven, G. Sachse, S. Vay, H. Schlager, and H. Ovarlez, 2000: Comparison of water vapor measurements from POLINAT 2 with ECMWF analyses in high-humidity conditions. J. Geophys. Res., 105 , 37373744.

    • Search Google Scholar
    • Export Citation
  • Palikonda, R., P. Minnis, P. K. Costulis, and D. P. Duda, 2002: Contrail climatology over the USA from MODIS and AVHRR data. Preprints, 10th Conf. on Aviation, Range, and Aerospace Meteorology, Portland, OR, Amer. Meteor. Soc., J1.3.

  • Palikonda, R., P. Minnis, D. P. Duda, and H. Mannstein, 2005: Contrail coverage derived from 2001 AVHRR data over the continental United States of America and surrounding areas. Meteor. Z., 14 , 525536.

    • Search Google Scholar
    • Export Citation
  • Penner, J. E., D. H. Lister, D. J. Griggs, D. J. Dokken, and M. McFarland, 1999: Aviation and the Global Atmosphere. Cambridge University Press, 373 pp.

    • Search Google Scholar
    • Export Citation
  • Peters, J. L., 1993: New techniques for contrail forecasting. Air Weather Service Scott Air Force Base Tech. Rep. AWS/TR-93/001, AD-A269686, 31 pp.

  • Pielke Sr., R. A., 2003: Heat storage within the Earth system. Bull. Amer. Meteor. Soc., 84 , 331335.

  • Pilié, R. J., and J. E. Jiusto, 1958: A laboratory study of contrails. J. Meteor., 15 , 149154.

  • Poellot, M. R., W. P. Arnott, and J. Hallett, 1999: In situ observations of contrail microphysics and implications for their radiative impact. J. Geophys. Res., 104 , 1207712084.

    • Search Google Scholar
    • Export Citation
  • Ponater, M., S. Brinkop, R. Sausen, and U. Schumann, 1996: Simulating the global atmospheric response to aircraft water vapor emissions and contrails: A first approach using a GCM. Ann. Geophys., 14 , 941960.

    • Search Google Scholar
    • Export Citation
  • Ponater, M., S. Marquart, and R. Sausen, 2002: Contrails in a comprehensive global climate model: Parameterization and radiative forcing results. J. Geophys. Res., 107 .4164, doi:10.1029/2001JD000429.

    • Search Google Scholar
    • Export Citation
  • Ponater, M., S. Marquart, and R. Sausen, 2005: On contrail climate sensitivity. Geophys. Res. Lett., 32 .L10706, doi:10.1029/2005GL022580.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., M. Dameris, and R. Sausen, 2003: Determining the tropopause height from gridded data. Geophys. Res. Lett., 30 .2042, doi:10.1029/2003GL018240.

    • Search Google Scholar
    • Export Citation
  • Rind, D., P. Lonergan, and K. Shah, 1996: Climatic effect of water vapor release in the upper troposphere. J. Geophys. Res., 101 , 2939529405.

    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., and G. D. Farquhar, 2002: The cause of decreased pan evaporation over the past 50 years. Science, 298 , 14101411.

  • Ross, M. N., R. R. Friedl, D. E. Anderson, M. R. Berman, B. Gandrud, W. T. Rawlins, E. C. Richard, and A. F. Tuck, 1999: Study blazing new trails into effects of aviation and rocket exhaust in the atmosphere. Eos, Trans. Amer. Geophys. Union, 80 , 437442443.

    • Search Google Scholar
    • Export Citation
  • Ross, R. J., and W. P. Elliott, 2001: Radiosonde-based Northern Hemisphere tropospheric water vapor trends. J. Climate, 14 , 16021612.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., 1997: Contrail-cirrus and their potential for regional climate change. Bull. Amer. Meteor. Soc., 78 , 18851903.

  • Sassen, K., and J. R. Campbell, 2001: A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part I: Macrophysical and synoptic properties. J. Atmos. Sci., 58 , 481496.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., J. M. Comstock, Z. Wang, and G. G. Mace, 2001: Cloud and aerosol research capabilities at FARS: The Facility for Atmospheric Remote Sensing. Bull. Amer. Meteor. Soc., 82 , 11191138.

    • Search Google Scholar
    • Export Citation
  • Sausen, R., K. Gierens, M. Ponater, and U. Schumann, 1998: A diagnostic study of the global distribution of contrails. Part I: Present day climate. Theor. Appl. Climatol., 61 , 127141.

    • Search Google Scholar
    • Export Citation
  • Sausen, R., Coauthors. 2005: Aviation radiative forcing in 2000: An update on IPCC (1999). Meteor. Z., 14 , 555561.

  • Schrader, M. L., 1997: Calculations of aircraft contrail formation critical temperatures. J. Appl. Meteor., 36 , 17251728.

  • Schröder, F., and Coauthors, 2000: On the transition of contrails into cirrus clouds. J. Atmos. Sci., 57 , 464480.

  • Schumann, U., 1996: On conditions for contrail formation from aircraft exhausts. Meteor. Z., 5 , 423.

  • Schumann, U., 2000: Influence of propulsion efficiency on contrail formation. Aerosp. Sci. Technol., 4 , 391401.

  • Schumann, U., 2005: Formation, properties and climatic effects of contrails. Comptes Rendus Phys., 6 , 549565.