The Berry and Reinhardt Autoconversion Parameterization: A Digest

Matthew S. Gilmore Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Matthew S. Gilmore in
Current site
Google Scholar
PubMed
Close
and
Jerry M. Straka School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Jerry M. Straka in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The simplified version of the Berry and Reinhardt parameterization used for initiating rain from cloud droplets is presented and is compared with 12 other versions of itself from the literature. Many of the versions that appear to be different from each other can be brought into agreement with the original parameterization by making the same assumptions: a mean diameter based upon mass or volume and distribution shape parameters chosen to give the same cloud mass relative variance as the original Berry and Reinhardt parameterization. However, there are differences in how authors have chosen to parameterize the cloud number concentration sink and rain number concentration source, and those choices, along with model limitations, have important impacts on rain development within the scheme. These differences among versions are shown to have important time-integrated feedbacks upon the developing initial rain distribution. Three of 12 implementations of the bulk scheme are shown to be able to reproduce the original Berry and Reinhardt bin-model solutions very well, and about 6 of 12 do poorly.

Corresponding author address: Dr. Matthew Gilmore, Dept. of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory St., Urbana, IL 61801-3070. Email: gilmore@atmos.uiuc.edu

Abstract

The simplified version of the Berry and Reinhardt parameterization used for initiating rain from cloud droplets is presented and is compared with 12 other versions of itself from the literature. Many of the versions that appear to be different from each other can be brought into agreement with the original parameterization by making the same assumptions: a mean diameter based upon mass or volume and distribution shape parameters chosen to give the same cloud mass relative variance as the original Berry and Reinhardt parameterization. However, there are differences in how authors have chosen to parameterize the cloud number concentration sink and rain number concentration source, and those choices, along with model limitations, have important impacts on rain development within the scheme. These differences among versions are shown to have important time-integrated feedbacks upon the developing initial rain distribution. Three of 12 implementations of the bulk scheme are shown to be able to reproduce the original Berry and Reinhardt bin-model solutions very well, and about 6 of 12 do poorly.

Corresponding author address: Dr. Matthew Gilmore, Dept. of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory St., Urbana, IL 61801-3070. Email: gilmore@atmos.uiuc.edu

Save
  • Beard, K. V., D. B. Johnson, and D. Baumgardner, 1986: Aircraft observations of large raindrops in warm, shallow, convective clouds. Geophys. Res. Lett., 13 , 991994.

    • Search Google Scholar
    • Export Citation
  • Beheng, K. D., 1994: A parameterization of warm cloud microphysical conversion processes. Atmos. Res., 33 , 193206.

  • Beheng, K. D., and G. Doms, 1986: A general formulation of collection rates of cloud and raindrops using the kinetic equation and comparison with parameterizations. Beitr. Phys. Atmos., 59 , 6684.

    • Search Google Scholar
    • Export Citation
  • Berry, E. X., and R. L. Reinhardt, 1974a: An analysis of cloud drop growth by collection. Part I. Double distributions. J. Atmos. Sci., 31 , 18141824.

    • Search Google Scholar
    • Export Citation
  • Berry, E. X., and R. L. Reinhardt, 1974b: An analysis of cloud drop growth by collection. Part II. Single initial distributions. J. Atmos. Sci., 31 , 18251831.

    • Search Google Scholar
    • Export Citation
  • Berry, E. X., and R. L. Reinhardt, 1974c: An analysis of cloud drop growth by collection. Part III. Accretion and self-collection. J. Atmos. Sci., 31 , 21182126.

    • Search Google Scholar
    • Export Citation
  • Berry, E. X., and R. L. Reinhardt, 1974d: An analysis of cloud drop growth by collection. Part IV. A new parameterization. J. Atmos. Sci., 31 , 21272135.

    • Search Google Scholar
    • Export Citation
  • Bott, A., 1998: A flux method for the numerical solution of the stochastic collection equation. J. Atmos. Sci., 55 , 22842293.

  • Carrió, G. G., and M. Nicolini, 1999: A double moment warm rain scheme: Description and test within a kinematic framework. Atmos. Res., 52 , 116.

    • Search Google Scholar
    • Export Citation
  • Carrió, G. G., and M. Nicolini, 2002: An alternative procedure to evaluate number concentration rates in two-moment bulk microphysical schemes. Atmos. Res., 65 , 93108.

    • Search Google Scholar
    • Export Citation
  • Chaumerliac, N., E. Richard, R. Rosset, and E. C. Nickerson, 1991: Impact of two microphysical schemes upon gas scavenging and deposition in a mesoscale meteorological model. J. Appl. Meteor., 30 , 8897.

    • Search Google Scholar
    • Export Citation
  • Cohard, J-M., and J-P. Pinty, 2000: A comprehensive two-moment warm microphysical bulk scheme. I: Description and tests. Quart. J. Roy. Meteor. Soc., 126 , 18151842.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., 1972: Numerical simulation of precipitation development in supercooled cumuli—Part I. Mon. Wea. Rev., 100 , 757763.

  • Farley, R. D., T. Wu, H. D. Orville, and M. R. Hjelmfelt, 2004: Numerical simulation of hail formation in the 28 June 1989 Bismarck thunderstorm. Part I. Studies related to hail production. Atmos. Res., 71 , 5179.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., and Z. Levin, 1986: The lognormal fit to raindrop spectra from frontal convective clouds in Israel. J. Climate Appl. Meteor., 25 , 13461363.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., S. Tzivion, and Z. Levin, 1988: Evolution of raindrop spectra. Part I: Solution to the stochastic collection/breakup equation using the method of moments. J. Atmos. Sci., 45 , 33873399.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51 , 249280.

  • Fitzgerald, J. W., and P. A. Spyers-Duran, 1973: Changes in cloud nucleus concentration and cloud droplet size distribution associated with pollution from St. Louis. J. Appl. Meteor., 12 , 511516.

    • Search Google Scholar
    • Export Citation
  • Glickman, T., 2000: Glossary of Meteorology. 2d ed. Amer. Meteor. Soc., 855 pp.

  • Golovin, A. M., 1963: The solution of the coagulating equation for cloud droplets in a rising air current. Bull. Acad. Sci. USSR, Ser. Geophys., 5 , 482487.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr. No. 32, Amer. Meteor. Soc., 84 pp.

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., W. A. Cooper, D. W. Breed, I. R. Paluch, P. L. Smith, and G. Vali, 1982: Microphysics. Hailstorms of the Central High Plains, C. A. Knight and P. Squires, Eds., Vol. 1, Colorado Associated University Press, 151–193.

    • Search Google Scholar
    • Export Citation
  • Lin, Y-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22 , 10651092.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., and P. H. Daum, 2004: Parameterization of the autoconversion process. Part I: Analytical formulation of the Kessler-type parameterizations. J. Atmos. Sci., 61 , 15391548.

    • Search Google Scholar
    • Export Citation
  • Long, A. B., 1974: Solutions to the droplet collection equation for polynomial kernels. J. Atmos. Sci., 31 , 10401052.

  • Lynn, B. H., A. P. Khain, J. Dudhia, D. Rosenfeld, A. Pokrovsky, and A. Seifert, 2005: Spectral (bin) microphysics coupled with a mesoscale model (MM5). Part I: Model description and first results. Mon. Wea. Rev., 133 , 4458.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., R. L. Walko, J. Harrington, and W. R. Cotton, 1997: New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res., 45 , 339.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62 , 30653081.

    • Search Google Scholar
    • Export Citation
  • Nickerson, E. C., E. Richard, R. Rosset, and D. R. Smith, 1986: The numerical simulation of clouds, rains, and airflow over the Vosges and Black Forest mountains: A meso-β model with parameterized microphysics. Mon. Wea. Rev., 114 , 398414.

    • Search Google Scholar
    • Export Citation
  • Proctor, F. H., 1987: The Terminal Area Simulation System. Vol. 1: Theoretical formulation. NASA Contractor Rep. 4046, DOT/FAA/PM-86/50, 168 pp.

  • Pruppacher, H. R., and J. D. Klett, 1978: Microphysics of Clouds and Precipitation. D. Reidel, 714 pp.

  • Richard, E., and N. Chaumerliac, 1989: Effects of different rain parameterizations on the simulation of mesoscale orographic precipitation. J. Appl. Meteor., 28 , 11971212.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and W. R. Cotton, 2004: A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module descriptions and supercell test simulations. J. Appl. Meteor., 43 , 182195.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2001: A double-moment parameterization for simulating autoconversion, accretion and self-collection. Atmos. Res., 59-60 , 265281.

    • Search Google Scholar
    • Export Citation
  • Simmel, M., T. Trautmann, and G. Tetzlaff, 2002: Numerical solution of the stochastic collection equation—Comparison of the linear discrete method with other methods. Atmos. Res., 61 , 135148.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., and V. Wiggert, 1969: Models of precipitating cumulus towers. Mon. Wea. Rev., 97 , 471489.

  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132 , 519542.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, W. D. Hall, and R. M. Rasmussen, 2006: A new bulk microphysical parameterization for WRF (and MM5). Preprints. Seventh WRF Users Workshop, Boulder, CO, National Center for Atmospheric Research, 5.3. [Available online at http://www.mmm.ucar.edu/wrf/users/workshops/WS2006/WorkshopPapers.htm.].

    • Search Google Scholar
    • Export Citation
  • Tzivion, S., G. Feingold, and Z. Levin, 1987: An efficient numerical solution to the stochastic collection equation. J. Atmos. Sci., 44 , 31393149.

    • Search Google Scholar
    • Export Citation
  • Tzivion, S., T. G. Reisin, and Z. Levin, 1999: A numerical solution of the kinetic collection equation using high spectral grid resolution: A proposed reference. J. Comput. Phys., 148 , 527544.

    • Search Google Scholar
    • Export Citation
  • Verlinde, J., and W. R. Cotton, 1993: Fitting microphysical observations of nonsteady convective clouds to a numerical model: An application of the adjoint technique of data assimilation to a kinematic model. Mon. Wea. Rev., 121 , 27762793.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, 1995: New RAMS cloud microphysics parameterization. Part I: The single-moment scheme. Atmos. Res., 38 , 2962.

    • Search Google Scholar
    • Export Citation
  • Willis, P. T., and P. Tattelman, 1989: Drop-size distributions associated with intense rainfall. J. Appl. Meteor., 28 , 315.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 449 130 14
PDF Downloads 596 58 7