Statistical Characteristics of Raindrop Size Distribution in Southwest Monsoon Season

N. V. P. Kirankumar National Atmospheric Research Laboratory, Gadanki, India

Search for other papers by N. V. P. Kirankumar in
Current site
Google Scholar
PubMed
Close
,
T. Narayana Rao National Atmospheric Research Laboratory, Gadanki, India

Search for other papers by T. Narayana Rao in
Current site
Google Scholar
PubMed
Close
,
B. Radhakrishna National Atmospheric Research Laboratory, Gadanki, India

Search for other papers by B. Radhakrishna in
Current site
Google Scholar
PubMed
Close
, and
D. Narayana Rao National Atmospheric Research Laboratory, Gadanki, India

Search for other papers by D. Narayana Rao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Raindrop size distribution (DSD) parameters are retrieved from dual-frequency (UHF and VHF) wind profiler measurements made at Gadanki, India, in a summer monsoon season. The convoluted UHF spectra are first corrected for vertical air motion and spectral broadening (using VHF measurements) and later are used for deriving DSD parameters. Two distinctly different case studies, a mesoscale convective system and a pure stratiform precipitation system, have been considered for a detailed study. DSD parameters obtained in these case studies reveal systematic variations of DSD from case to case and also from one rain regime to another within the same precipitating system. A statistical study has been carried out using the profiler data collected during the passage of 16 rain events. The retrieved DSD profiles are divided into separate rain regimes (stratiform and convection), based on reflectivity, to examine salient microphysical characteristics and the vertical variability of DSD in different precipitation regimes. The distribution of DSD parameters is, in general, wider in the convective rain regime than in the stratiform regime, particularly below 2.4 km. The vertical variation of the gamma parameter distribution in the stratiform rain regime is minimal, indicating that the microphysical processes (growth and decay), which alter the rain DSD, may be in equilibrium. On the other hand, the distribution in the convective rain regime appears to be more complex, with the mean profile of the shape parameter varying significantly with height. The observed vertical variability of the gamma parameters and the median volume diameter in the convective rain regime is attributed to two major microphysical processes: evaporation and breakup. The role of other processes, like drop sorting and collision–coalescence, in altering the DSD parameters is also discussed. The present statistics, representing continental monsoon rainfall, are compared with the existing statistics at Darwin, Australia, and the results are discussed in light of DSD differences in oceanic and continental monsoon precipitation.

* Current affiliation: Space Physics Laboratory, Trivandrum, India

Corresponding author address: Dr. T. Narayana Rao, National Atmospheric Research Laboratory, SVU Campus, P.O. Box No. 123, Prakasham Nagar, Tirupati, 517 502, AP, India. Email: tnrao@narl.gov.in, drtnr2001@yahoo.com

Abstract

Raindrop size distribution (DSD) parameters are retrieved from dual-frequency (UHF and VHF) wind profiler measurements made at Gadanki, India, in a summer monsoon season. The convoluted UHF spectra are first corrected for vertical air motion and spectral broadening (using VHF measurements) and later are used for deriving DSD parameters. Two distinctly different case studies, a mesoscale convective system and a pure stratiform precipitation system, have been considered for a detailed study. DSD parameters obtained in these case studies reveal systematic variations of DSD from case to case and also from one rain regime to another within the same precipitating system. A statistical study has been carried out using the profiler data collected during the passage of 16 rain events. The retrieved DSD profiles are divided into separate rain regimes (stratiform and convection), based on reflectivity, to examine salient microphysical characteristics and the vertical variability of DSD in different precipitation regimes. The distribution of DSD parameters is, in general, wider in the convective rain regime than in the stratiform regime, particularly below 2.4 km. The vertical variation of the gamma parameter distribution in the stratiform rain regime is minimal, indicating that the microphysical processes (growth and decay), which alter the rain DSD, may be in equilibrium. On the other hand, the distribution in the convective rain regime appears to be more complex, with the mean profile of the shape parameter varying significantly with height. The observed vertical variability of the gamma parameters and the median volume diameter in the convective rain regime is attributed to two major microphysical processes: evaporation and breakup. The role of other processes, like drop sorting and collision–coalescence, in altering the DSD parameters is also discussed. The present statistics, representing continental monsoon rainfall, are compared with the existing statistics at Darwin, Australia, and the results are discussed in light of DSD differences in oceanic and continental monsoon precipitation.

* Current affiliation: Space Physics Laboratory, Trivandrum, India

Corresponding author address: Dr. T. Narayana Rao, National Atmospheric Research Laboratory, SVU Campus, P.O. Box No. 123, Prakasham Nagar, Tirupati, 517 502, AP, India. Email: tnrao@narl.gov.in, drtnr2001@yahoo.com

Save
  • Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. Space Sci., 11 , 135.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., C. R. Williams, D. K. Rajopadhyaya, S. K. Avery, K. S. Gage, and P. T. May, 2000: Drop-size distribution characteristics in tropical mesoscale convective systems. J. Appl. Meteor., 39 , 760777.

    • Search Google Scholar
    • Export Citation
  • Currier, P. E., S. K. Avery, B. B. Balsley, K. S. Gage, and W. L. Ecklund, 1992: Combined use of 50 MHz and 915 MHz wind profilers in the estimation of raindrop size distributions. Geophys. Res. Lett., 19 , 10171020.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., J. Simpson, and W. K. Tao, 1996: Factors responsible for precipitation efficiencies in midlatitude and tropical squall simulations. Mon. Wea. Rev., 124 , 21002125.

    • Search Google Scholar
    • Export Citation
  • Gage, K. S., C. R. Williams, P. E. Johnston, W. L. Ecklund, R. Cifelli, A. Tokay, and D. A. Carter, 2000: Doppler radar profilers as calibration tools for scanning radars. J. Appl. Meteor., 39 , 22092222.

    • Search Google Scholar
    • Export Citation
  • Gossard, E. E., 1988: Measuring drop-size distributions in clouds with a clear-air-sensing Doppler radar. J. Atmos. Oceanic Technol., 5 , 640649.

    • Search Google Scholar
    • Export Citation
  • Gossard, E. E., R. G. Strauch, and R. R. Rogers, 1990: Evolution of dropsize distribution in liquid precipitation observed by ground-based Doppler radar. J. Atmos. Oceanic Technol., 7 , 815828.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, T., and A. Adachi, 2005: Retrieval of arbitrarily shaped raindrop size distributions from wind profiler measurements. J. Atmos. Oceanic Technol., 22 , 433442.

    • Search Google Scholar
    • Export Citation
  • Kozu, T., K. K. Reddy, S. Mori, M. Thurai, J. T. Ong, D. N. Rao, and T. Shimomai, 2006: Seasonal and diurnal variations of raindrop size distribution in Asian monsoon region. J. Meteor. Soc. Japan, 84A , 195209.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., A. D. MacKinnon, R. A. Vincent, and P. T. May, 2004: Raindrop size distribution retrievals from a VHF boundary layer profiler. J. Atmos. Oceanic Technol., 21 , 4560.

    • Search Google Scholar
    • Export Citation
  • Maguire II, W. B., and S. K. Avery, 1994: Retrieval of raindrop size distributions using two Doppler wind profilers: Model sensitivity testing. J. Appl. Meteor., 33 , 16231635.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5 , 165166.

  • McKague, D., K. F. Evans, and S. Avery, 1998: Assessment of the effects of drop size distribution variations retrived from UHF radar on passive microwave remote sensing of precipitation. J. Appl. Meteor., 37 , 155165.

    • Search Google Scholar
    • Export Citation
  • Rajopadhyaya, D. K., P. T. May, and R. A. Vincent, 1993: A general approach to the retrieval of raindrop size distributions from VHF wind profiler Doppler spectra: Modeling results. J. Atmos. Oceanic Technol., 10 , 710717.

    • Search Google Scholar
    • Export Citation
  • Rajopadhyaya, D. K., P. T. May, R. Cifelli, S. K. Avery, C. R. Williams, W. L. Ecklund, and K. S. Gage, 1998: The effect of vertical air motions on rain rates and median volume diameter determined from combined UHF and VHF wind profiler measurements and comparisons with rain gauge measurements. J. Atmos. Oceanic Technol., 15 , 13061319.

    • Search Google Scholar
    • Export Citation
  • Rajopadhyaya, D. K., S. K. Avery, P. T. May, and R. C. Cifelli, 1999: Comparison of precipitation estimation using single- and dual-frequency wind profilers: Simulations and experimental results. J. Atmos. Oceanic Technol., 16 , 165173.

    • Search Google Scholar
    • Export Citation
  • Rao, P. B., A. R. Jain, P. Kishore, P. Balamuralidhar, S. H. Damle, and G. Viswanathan, 1995: Indian MST radar, 1. System description and sample vector wind measurements in ST mode. Radio Sci., 30 , 11251138.

    • Search Google Scholar
    • Export Citation
  • Rao, T. N., D. N. Rao, K. Mohan, and S. Raghavan, 2001: Classification of tropical precipitating systems and associated Z–R relationships. J. Geophys. Res., 106 , 1769917711.

    • Search Google Scholar
    • Export Citation
  • Rao, T. N., N. V. P. Kirankumar, B. Radhakrishna, and D. N. Rao, 2006: On the variability of the shape-slope parameter relations of the gamma raindrop size distribution model. Geophys. Res. Lett., 33 .L22809, doi:10.1029/2006GL028440.

    • Search Google Scholar
    • Export Citation
  • Reddy, K. K., and Coauthors, 2001: Lower atmospheric wind profiler at Gadanki, tropical India: Initial result. Meteor. Z., 10 , 457466.

    • Search Google Scholar
    • Export Citation
  • Sato, T., D. Hiroshi, H. Iwai, I. Kimura, S. Fukao, M. Yamamoto, T. Tsuda, and S. Kato, 1990: Computer processing for deriving drop-size distributions and vertical air velocities from VHF Doppler radar spectra. Radio Sci., 25 , 961973.

    • Search Google Scholar
    • Export Citation
  • Schafer, R., S. Avery, P. May, D. Rajopadhyaya, and C. Williams, 2002: Estimation of rainfall drop size distributions from dual-frequency wind profiler spectra using deconvolution and a nonlinear least squares fitting technique. J. Atmos. Oceanic Technol., 19 , 864874.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35 , 355371.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22 , 17641775.

    • Search Google Scholar
    • Export Citation
  • Wakasugi, K., A. Mizutani, M. Matsuo, S. Fukao, and S. Kato, 1986: A direct method for deriving drop-size distribution and vertical air velocities from VHF Doppler radar spectra. J. Atmos. Oceanic Technol., 3 , 623629.

    • Search Google Scholar
    • Export Citation
  • Wakasugi, K., A. Mizutani, M. Matsuo, S. Fukao, and S. Kato, 1987: Further discussion on deriving drop-size distribution and vertical air velocities directly from VHF Doppler radar spectra. J. Atmos. Oceanic Technol., 4 , 170179.

    • Search Google Scholar
    • Export Citation
  • Williams, C. R., 2002: Simultaneous ambient air motion and raindrop size distributions retrieved from UHF vertical incident profiler observations. Radio Sci., 37 .1024, doi:10.1029/2000RS002603.

    • Search Google Scholar
    • Export Citation
  • Williams, C. R., W. L. Ecklund, and K. S. Gage, 1995: Classification of precipitating clouds in the tropics using 915-MHz wind profilers. J. Atmos. Oceanic Technol., 12 , 9961012.

    • Search Google Scholar
    • Export Citation
  • Williams, C. R., W. L. Ecklund, P. E. Johnston, and K. S. Gage, 2000: Cluster analysis techniques to separate air motion and hydrometeors in vertical incident profiler observations. J. Atmos. Oceanic Technol., 17 , 949962.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 642 236 23
PDF Downloads 317 90 6