A Binned Approach to Cloud-Droplet Riming Implemented in a Bulk Microphysics Model

Stephen M. Saleeby Colorado State University, Fort Collins, Colorado

Search for other papers by Stephen M. Saleeby in
Current site
Google Scholar
PubMed
Close
and
William R. Cotton Colorado State University, Fort Collins, Colorado

Search for other papers by William R. Cotton in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper presents the development and application of a binned approach to cloud-droplet riming within a bulk microphysics model. This approach provides a more realistic representation of collision–coalescence that occurs between ice and cloud particles of various sizes. The binned approach allows the application of specific collection efficiencies, within the stochastic collection equation, for individual size bins of droplets and ice particles; this is in sharp contrast to the bulk approach that uses a single collection efficiency to describe the growth of a distribution of an ice species by collecting cloud droplets. Simulations of a winter orographic cloud event reveal a reduction in riming when using the binned riming approach and, subsequently, larger amounts of supercooled liquid water within the orographic cloud.

Corresponding author address: Stephen M. Saleeby, Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523. Email: smsaleeb@atmos.colostate.edu

Abstract

This paper presents the development and application of a binned approach to cloud-droplet riming within a bulk microphysics model. This approach provides a more realistic representation of collision–coalescence that occurs between ice and cloud particles of various sizes. The binned approach allows the application of specific collection efficiencies, within the stochastic collection equation, for individual size bins of droplets and ice particles; this is in sharp contrast to the bulk approach that uses a single collection efficiency to describe the growth of a distribution of an ice species by collecting cloud droplets. Simulations of a winter orographic cloud event reveal a reduction in riming when using the binned riming approach and, subsequently, larger amounts of supercooled liquid water within the orographic cloud.

Corresponding author address: Stephen M. Saleeby, Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523. Email: smsaleeb@atmos.colostate.edu

Save
  • Borys, R. D., and M. A. Wetzel, 1997: Storm Peak Laboratory: A research, teaching and service facility for the atmospheric sciences. Bull. Amer. Meteor. Soc., 78 , 2115–2123.

    • Search Google Scholar
    • Export Citation
  • Borys, R. D., D. H. Lowenthal, and D. L. Mitchell, 2000: The relationships among cloud microphysics, chemistry, and precipitation rate in cold mountain clouds. Atmos. Environ., 34 , 2593–2602.

    • Search Google Scholar
    • Export Citation
  • Borys, R. D., D. H. Lowenthal, S. A. Cohn, and W. O. J. Brown, 2003: Mountaintop and radar measurements of anthropogenic aerosol effects on snow growth and snowfall rate. Geophys. Res. Lett., 30 .1538, doi:10.1029/2002GL016855.

    • Search Google Scholar
    • Export Citation
  • Cober, S. G., and R. List, 1993: Measurements of the heat and mass transfer parameters characterizing conical graupel growth. J. Atmos. Sci., 50 , 1591–1609.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., G. Thompson, and P. W. Mielke Jr., 1994: Real-time mesoscale prediction on workstations. Bull. Amer. Meteor. Soc., 75 , 349–362.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and Coauthors, 2003: RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82 , 5–29.

  • Cotton, W. R., R. McAnelly, G. CarriĂł, P. Mielke, and C. Hartzell, 2006: Simulations of snowpack augmentation in the Colorado Rocky Mountains. J. Wea. Mod., 38 , 58–65.

    • Search Google Scholar
    • Export Citation
  • Greenan, B. J. W., and R. List, 1995: Experimental closure of the heat and mass transfer theory of spheroidal hailstones. J. Atmos. Sci., 52 , 3797–3815.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., 1997: The effects of radiative and microphysical processes on simulated warm and transition season Arctic stratus. Ph.D. dissertation, Colorado State University, Atmospheric Science Paper 637, 289 pp.

  • Heggli, M. F., and R. M. Rauber, 1988: The characteristics and evolution of supercooled water in wintertime storms over the Sierra Nevada: A summary of microwave radiometric measurements taken during the Sierra Cooperative Pilot Project. J. Appl. Meteor., 27 , 989–1015.

    • Search Google Scholar
    • Export Citation
  • Hindman, E. E., 1986: Characteristics of supercooled liquid water in clouds at mountaintops in the Colorado Rockies. J. Climate Appl. Meteor., 25 , 1271–1279.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., M. K. Politovich, and L. F. Radke, 1980: The structures of summer convective clouds in eastern Montana. I: Natural clouds. J. Appl. Meteor., 19 , 645–663.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

    • Search Google Scholar
    • Export Citation
  • Lew, J. K., D. C. Montague, H. R. Pruppacher, and R. M. Rasmussen, 1986a: A wind tunnel investigation on the riming of snowflakes. Part I: Porous disks and large stellars. J. Atmos. Sci., 43 , 2392–2409.

    • Search Google Scholar
    • Export Citation
  • Lew, J. K., D. C. Montague, H. R. Pruppacher, and R. M. Rasmussen, 1986b: A wind tunnel investigation on the riming of snowflakes. Part II: Natural and synthetic aggregates. J. Atmos. Sci., 43 , 2410–2417.

    • Search Google Scholar
    • Export Citation
  • McAnelly, R. L., M. P. Meyers, E. M. Page, and W. R. Cotton, 2000: Application of a mesoscale model to fire weather forecasting. Postprints, Second Southwest Weather Symp., Tucson, AZ, National Weather Service, 6 pp.

  • Meyers, M. P., R. L. Walko, J. Y. Harrington, and W. R. Cotton, 1997: New RAMS cloud microphysics parameterization. Part II. The two-moment scheme. Atmos. Res., 45 , 3–39.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., J. S. Snook, D. A. Wesley, and G. S. Poulos, 2003: A Rocky Mountain storm. Part II: The forest blowdown over the west slope of the northern Colorado mountains—observations, analysis, and modeling. Wea. Forecasting, 18 , 662–674.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., R. Zhang, and R. L. Pitter, 1990: Mass-dimensional relationships for ice particles and the influence of riming on snowfall rates. J. Appl. Meteor., 29 , 153–163.

    • Search Google Scholar
    • Export Citation
  • Poulos, G. S., D. A. Wesley, J. S. Snook, and M. P. Meyers, 2002: A Rocky Mountain storm. Part I: The blizzard—Kinematic evolution and the potential for high-resolution numerical forecasting of snowfall. Wea. Forecasting, 17 , 955–970.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and L. O. Grant, 1986: The characteristics and distribution of cloud water over the mountains of northern Colorado during wintertime storms. Part II: Spatial distribution and microphysical characteristics. J. Climate Appl. Meteor., 25 , 489–504.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., L. O. Grant, D. Feng, and J. B. Snider, 1986: The characteristics and distribution of cloud water over the mountains of northern Colorado during wintertime storms. Part I: Temporal variations. J. Climate Appl. Meteor., 25 , 468–488.

    • Search Google Scholar
    • Export Citation
  • Reinking, R. F., J. B. Snider, and J. L. Coen, 2000: Influences of storm-embedded orographic gravity waves on cloud liquid water and precipitation. J. Appl. Meteor., 39 , 733–759.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and W. R. Cotton, 2004: A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module descriptions and supercell test simulations. J. Appl. Meteor., 43 , 182–195.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and W. R. Cotton, 2005: A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part II: Sensitivity to a Colorado winter snowfall event. J. Appl. Meteor., 44 , 1912–1929.

    • Search Google Scholar
    • Export Citation
  • Tzivion, S., G. Feingold, and Z. Levin, 1987: An efficient numerical solution to the stochastic collection equation. J. Atmos. Sci., 44 , 3139–3149.

    • Search Google Scholar
    • Export Citation
  • Verlinde, J., P. J. Flatau, and W. R. Cotton, 1990: Analytical solutions to the collection growth equation: Comparison with approximate methods and application to cloud microphysics parameterization schemes. J. Atmos. Sci., 47 , 2871–2880.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, 1995: New RAMS cloud microphysics parameterization. Part I: The single-moment scheme. Atmos. Res., 38 , 29–62.

    • Search Google Scholar
    • Export Citation
  • Wang, P. K., and W. Ji, 2000: Collision efficiencies of ice crystals at low–intermediate Reynolds numbers colliding with supercooled cloud droplets: A numerical study. J. Atmos. Sci., 57 , 1001–1009.

    • Search Google Scholar
    • Export Citation
  • Warburton, J. A., and T. P. DeFelice, 1986: Oxygen isotopic composition of central Sierra Nevada precipitation. I: Identification of ice-phase water capture regions in winter storms. Atmos. Res., 20 , 11–22.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 433 148 37
PDF Downloads 263 88 3