Modeling Optical Turbulence and Seeing over Mauna Kea

T. Cherubini University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by T. Cherubini in
Current site
Google Scholar
PubMed
Close
,
S. Businger University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by S. Businger in
Current site
Google Scholar
PubMed
Close
,
R. Lyman University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by R. Lyman in
Current site
Google Scholar
PubMed
Close
, and
M. Chun University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by M. Chun in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Atmospheric turbulence is a primary concern for astronomers. Turbulence causes amplitude and phase fluctuations in electromagnetic waves propagating through the atmosphere, constraining the maximum telescope resolution and resulting in telescope image degradation. Astronomical parameters that quantify these effects are generically referred to as seeing. Adaptive optics (AO) is used to reduce image degradation associated with optical turbulence. However, to optimize AO, knowledge of the vertical profile of turbulence and overall (integrated) seeing is needed. In this paper, an optical turbulence algorithm is described that makes use of the information on turbulence kinetic energy provided by a planetary boundary layer scheme available in the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5). Optical turbulence data collected on Mauna Kea during the 2002 site monitoring campaign are used to validate the algorithm, which has been implemented in operational runs of MM5 at the Mauna Kea Weather Center.

Corresponding author address: Dr. Tiziana Cherubini, Department of Meteorology, University of Hawaii at Manoa, 2525 Correa Rd., Honolulu, HI 96825. Email: tiziana@hawaii.edu

Abstract

Atmospheric turbulence is a primary concern for astronomers. Turbulence causes amplitude and phase fluctuations in electromagnetic waves propagating through the atmosphere, constraining the maximum telescope resolution and resulting in telescope image degradation. Astronomical parameters that quantify these effects are generically referred to as seeing. Adaptive optics (AO) is used to reduce image degradation associated with optical turbulence. However, to optimize AO, knowledge of the vertical profile of turbulence and overall (integrated) seeing is needed. In this paper, an optical turbulence algorithm is described that makes use of the information on turbulence kinetic energy provided by a planetary boundary layer scheme available in the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5). Optical turbulence data collected on Mauna Kea during the 2002 site monitoring campaign are used to validate the algorithm, which has been implemented in operational runs of MM5 at the Mauna Kea Weather Center.

Corresponding author address: Dr. Tiziana Cherubini, Department of Meteorology, University of Hawaii at Manoa, 2525 Correa Rd., Honolulu, HI 96825. Email: tiziana@hawaii.edu

Save
  • André, J. C., G. De Moor, P. Lacarrère, and R. Du Vachat, 1978: Modeling the 24-hour evolution of the mean and turbulent structures of the planetary boundary layer. J. Atmos. Sci., 35 , 18611883.

    • Search Google Scholar
    • Export Citation
  • Antonia, R. A., A. J. Chambers, and C. A. Friehe, 1978: Statistical properties of optical refractive index fluctuations in the marine boundary layer. Bound.-Layer Meteor., 15 , 243253.

    • Search Google Scholar
    • Export Citation
  • Avila, R., J. Vernin, and E. Masciadri, 1997: Whole atmospheric-turbulence profiling with generalized scidar. Appl. Opt., 36 , 78987905.

    • Search Google Scholar
    • Export Citation
  • Ballard, S. P., B. W. Golding, and R. N. B. Smith, 1991: Mesoscale model experimental forecasts of the haar of northeast Scotland. Mon. Wea. Rev., 119 , 21072123.

    • Search Google Scholar
    • Export Citation
  • Bean, B. R., and E. J. Dutton, 1966: Radio Meteorology. NBS Monogr., No. 92, U.S. Government Printing Office, 435 pp.

  • Beckers, J. M., 1993: Adaptive optics for astronomy: Principles, performance, and applications. Ann. Rev. Astron. Astrophys., 31 , 1362.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., 1997: Simulation numérique de la turbulence atmosphérique sur la zone du Mt. Lachens (Numeric simulation of the atmospheric turbulence over Mt. Lachens). Tech. Rep. 22.796/DA.B1/DC, 26 pp.

  • Bougeault, P., C. De Hui, B. Fleury, and J. Laurent, 1995: Investigation of seeing by means of an atmospheric mesoscale numerical simulation. Appl. Opt., 34 , 3481.

    • Search Google Scholar
    • Export Citation
  • Businger, S., R. McLaren, R. Ogasawara, D. Simons, and R. J. Wainscoat, 2002: Starcasting. Bull. Amer. Meteor. Soc., 83 , 858871.

  • Cherubini, T., S. Businger, C. Velden, and R. Ogasawara, 2006: The impact of satellite-derived atmospheric motion vectors on mesoscale forecasts over Hawaii. Mon. Wea. Rev., 134 , 20092020.

    • Search Google Scholar
    • Export Citation
  • Coulman, C. E., 1980: Correlations between velocity temperature and humidity fluctuations in the air above land and ocean. Bound.-Layer Meteor., 19 , 403420.

    • Search Google Scholar
    • Export Citation
  • Coulman, C. E., 1985: Fundamental and applied aspects of astronomical “seeing”. Ann. Rev. Astron. Astrophys., 23 , 1957.

  • Coulman, C. E., J. C. André, P. Lacarrère, and P. R. Gillingham, 1986: The observation, calculation, and possible forecasting of astronomical seeing. Publ. Astron. Soc. Pac., 98 , 376387.

    • Search Google Scholar
    • Export Citation
  • Friehe, C. A., J. C. La Rue, F. H. Champagne, C. H. Gibson, and G. F. Dreyer, 1975: Effect of temperature and humidity fluctuations on the optical refractive index in the marine boundary layer. J. Opt. Soc. Amer., 65 , 15021511.

    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., and J. B. Klemp, 2000: Behavior of flow over step orography. Mon. Wea. Rev., 128 , 11531164.

  • Garand, L., 1983: Some improvements and complements to the infrared emissivity algorithm including a parameterization of the absorption in the continuum region. J. Atmos. Sci., 40 , 230243.

    • Search Google Scholar
    • Export Citation
  • Gayno, G. A., 1994: Development of a higher-order, fog-producing boundary layer model suitable for use in numerical weather prediction. M.S. thesis, Dept. of Meteorology, The Pennsylvania State University, 104 pp. [Available from Dept. of Meteorology, The Pennsylvania State University, University Park, PA 16802.].

  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398-STR, 122 pp.

  • Imbard, M., A. Joly, and R. Du Vachat, 1986: Le modèle de prévision numérique PERIDOT: Formulation dynamique et modes de fonctionnement. EERM Tech. Rep. 161, 70 pp. [Available from CNRM, 42, Av. Coriolis, 31057 Toulouse, France.].

  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47 , 27842802.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and D. R. Durran, 1983: An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models. Mon. Wea. Rev., 111 , 430444.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., W. C. Skamarock, and O. Fuhrer, 2003: Numerical consistency of metric terms in terrain-following coordinates. Mon. Wea. Rev., 131 , 12291239.

    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1941: Local structure of turbulence in an incompressible viscous fluid at very large Reynolds numbers. Dokl. Akad. Nauk SSSR, 30 , 301305. (English translation in Friedlander, S. K., and L. Topper, Eds., 1961: Turbulence: Classic Papers on Statistical Theory. Interscience Publishers, 187 pp.).

    • Search Google Scholar
    • Export Citation
  • Kornilov, V., A. A. Tokovinin, O. Vozyakova, A. Zaitsev, N. Shatsky, S. F. Potanin, and M. S. Sarazin, 2003: MASS: A monitor of the vertical turbulence distribution. Adaptive Optical System Technologies II, P. L. Wizinowich and D. Bonaccini, Eds., International Society of Optical Engineering (SPIE Proceedings, Vol. 4839), 837–845.

    • Search Google Scholar
    • Export Citation
  • Launder, B. E., 1975: On the effects of a gravitational field on the turbulent transport of heat and momentum. J. Fluid Mech., 67 , 569581.

    • Search Google Scholar
    • Export Citation
  • Masciadri, E., 1998: Caractérisation et prévision à 3D de la turbulence optique par un modèle atmosphérique non-hydrostatique: Application à la Haute Résolution Angulaire au sol (3D characterization and forecast of the optical turbulence by a non-hydrostatic atmospheric model: Application to the “High Angular Resolution” techniques from the ground). Ph.D. thesis, Université de Nice, 139 pp.

  • Masciadri, E., and P. Jabouille, 2001: Improvements in the optical turbulence parameterization for 3D simulations in a region around a telescope. Astron. Astrophys., 376 , 727734.

    • Search Google Scholar
    • Export Citation
  • Masciadri, E., J. Vernin, and P. Bougeault, 1999a: 3D mapping of optical turbulence using an atmospheric numerical model. I. A useful tool for the ground-based astronomy. Astron. Astrophys. Suppl. Ser., 137 , 185202.

    • Search Google Scholar
    • Export Citation
  • Masciadri, E., J. Vernin, and P. Bougeault, 1999b: 3D mapping of optical turbulence using an atmospheric numerical model. II. First results at Cerro Paranal. Astron. Astrophys. Suppl. Ser., 137 , 203216.

    • Search Google Scholar
    • Export Citation
  • Masciadri, E., R. Avila, and L. J. Sánchez, 2002: First evidence of the finite horizontal extent of the optical turbulence layers. Implications for new adaptive optics techniques. Astron. Astrophys., 382 , 378388.

    • Search Google Scholar
    • Export Citation
  • Masciadri, E., R. Avila, and L. J. Sánchez, 2004: Statistic reliability of the Meso-Nh Atmospherical Model for 3D Cn 2 simulations. Rev. Mex. Astron. Astrofís., 40 , 314.

    • Search Google Scholar
    • Export Citation
  • McGinley, J. A., 1989: The local analysis and prediction system. Preprints, 12th Conf. on Weather Analysis and Forecasting, Monterey, CA, Amer. Meteor. Soc., 15–20.

  • Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31 , 17911806.

    • Search Google Scholar
    • Export Citation
  • Prieur, J-L., G. Daigne, and R. Avila, 2001: SCIDAR measurements at Pic du Midi. Astron. Astrophys., 371 , 366377.

  • Prieur, J-L., R. Avila, G. Daigne, and J. Vernin, 2004: Automatic determination of wind profiles with generalized SCIDAR. Publ. Astron. Soc. Pac., 116 , 778789.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124B , 10711107.

    • Search Google Scholar
    • Export Citation
  • Roddier, F., 1981: The effect of atmospheric turbulence in optical astronomy. Progress in Optics, Vol. 19, E. Wolf, Ed., North-Holland Publishing, 281–376.

    • Search Google Scholar
    • Export Citation
  • Shafran, P. C., N. L. Seaman, and G. A. Gayno, 2000: Evaluation of numerical predictions of boundary layer structure during the Lake Michigan ozone study. J. Appl. Meteor., 39 , 412426.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 1978: Radiation profiles in extended water clouds. II: Parameterization schemes. J. Atmos. Sci., 35 , 21232132.

  • Tokovinin, A. A., J. Vernin, A. Ziad, and M. Chun, 2005: Optical turbulence profiles at Mauna Kea measured by MASS and SCIDAR. Publ. Astron. Soc. Pac., 117 , 395400.

    • Search Google Scholar
    • Export Citation
  • Vernin, J., and F. Roddier, 1973: Experimental determination of two-dimensional spatiotemporal power spectra of stellar light scintillation. Evidence for a multilayer structure of the air turbulence in the upper troposphere. J. Opt. Soc. Amer., 63 , 270273.

    • Search Google Scholar
    • Export Citation
  • Vernin, J., and M. Azouit, 1983: Traitement d’image adapté au speckle atmosphérique, II: Analyse multidimentionnelle appliquée au diagnostic à distance de la turbulence (Image treatment adapted to the atmospheric speckle, II: Multi-dimensional analysis applied to turbulent remote sensing). J. Opt., 14 , 131142.

    • Search Google Scholar
    • Export Citation
  • Wesely, M. L., and B. B. Hicks, 1978: High-frequency temperature and humidity correlation above a warm wet surface. J. Appl. Meteor., 17 , 123128.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1265 543 54
PDF Downloads 229 56 3