An Urban Parameterization for a Global Climate Model. Part I: Formulation and Evaluation for Two Cities

K. W. Oleson Climate and Global Dynamics Division, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by K. W. Oleson in
Current site
Google Scholar
PubMed
Close
,
G. B. Bonan Climate and Global Dynamics Division, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by G. B. Bonan in
Current site
Google Scholar
PubMed
Close
,
J. Feddema Department of Geography, University of Kansas, Lawrence, Kansas

Search for other papers by J. Feddema in
Current site
Google Scholar
PubMed
Close
,
M. Vertenstein Climate and Global Dynamics Division, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by M. Vertenstein in
Current site
Google Scholar
PubMed
Close
, and
C. S. B. Grimmond Department of Geography, King’s College, London, United Kingdom

Search for other papers by C. S. B. Grimmond in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Urbanization, the expansion of built-up areas, is an important yet less-studied aspect of land use/land cover change in climate science. To date, most global climate models used to evaluate effects of land use/land cover change on climate do not include an urban parameterization. Here, the authors describe the formulation and evaluation of a parameterization of urban areas that is incorporated into the Community Land Model, the land surface component of the Community Climate System Model. The model is designed to be simple enough to be compatible with structural and computational constraints of a land surface model coupled to a global climate model yet complex enough to explore physically based processes known to be important in determining urban climatology. The city representation is based upon the “urban canyon” concept, which consists of roofs, sunlit and shaded walls, and canyon floor. The canyon floor is divided into pervious (e.g., residential lawns, parks) and impervious (e.g., roads, parking lots, sidewalks) fractions. Trapping of longwave radiation by canyon surfaces and solar radiation absorption and reflection is determined by accounting for multiple reflections. Separate energy balances and surface temperatures are determined for each canyon facet. A one-dimensional heat conduction equation is solved numerically for a 10-layer column to determine conduction fluxes into and out of canyon surfaces. Model performance is evaluated against measured fluxes and temperatures from two urban sites. Results indicate the model does a reasonable job of simulating the energy balance of cities.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Keith Oleson, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. Email: oleson@ucar.edu

This article included in the Impacts of Land Use and Land Cover Change on the Atmosphere special collection.

Abstract

Urbanization, the expansion of built-up areas, is an important yet less-studied aspect of land use/land cover change in climate science. To date, most global climate models used to evaluate effects of land use/land cover change on climate do not include an urban parameterization. Here, the authors describe the formulation and evaluation of a parameterization of urban areas that is incorporated into the Community Land Model, the land surface component of the Community Climate System Model. The model is designed to be simple enough to be compatible with structural and computational constraints of a land surface model coupled to a global climate model yet complex enough to explore physically based processes known to be important in determining urban climatology. The city representation is based upon the “urban canyon” concept, which consists of roofs, sunlit and shaded walls, and canyon floor. The canyon floor is divided into pervious (e.g., residential lawns, parks) and impervious (e.g., roads, parking lots, sidewalks) fractions. Trapping of longwave radiation by canyon surfaces and solar radiation absorption and reflection is determined by accounting for multiple reflections. Separate energy balances and surface temperatures are determined for each canyon facet. A one-dimensional heat conduction equation is solved numerically for a 10-layer column to determine conduction fluxes into and out of canyon surfaces. Model performance is evaluated against measured fluxes and temperatures from two urban sites. Results indicate the model does a reasonable job of simulating the energy balance of cities.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Keith Oleson, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. Email: oleson@ucar.edu

This article included in the Impacts of Land Use and Land Cover Change on the Atmosphere special collection.

Save
  • Best, M. J., 2006: Progress towards better weather forecasts for city dwellers: From short range to climate change. Theor. Appl. Climatol., 84 , 4755.

    • Search Google Scholar
    • Export Citation
  • Best, M. J., C. S. B. Grimmond, and M. G. Villani, 2006: Evaluation of the urban tile in MOSES using surface energy balance observations. Bound.-Layer Meteor., 118 , 503525.

    • Search Google Scholar
    • Export Citation
  • Betts, R. A., 2001: Biogeophysical impacts of land use on present-day climate: Near-surface temperature change and radiative forcing. Atmos. Sci. Lett., 2 .39–51.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 1996: A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and user’s guide. NCAR Tech. Note NCAR/TN-417+STR, 150 pp.

  • Brown, M., 2000: Urban parameterizations for mesoscale meteorological models. Mesoscale Atmospheric Dispersion, Z. Boybeyi, Ed., WIT Press, 193–255.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., M. L. Blackmon, G. B. Bonan, J. J. Hack, T. B. Henderson, J. T. Kiehl, W. G. Large, and D. S. McKenna, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19 , 21222143.

    • Search Google Scholar
    • Export Citation
  • Copeland, J. H., R. A. Pielke, and T. G. F. Kittel, 1996: Potential climatic impacts of vegetation change: A regional modeling study. J. Geophys. Res., 101 , 74097418.

    • Search Google Scholar
    • Export Citation
  • Cramer, W., and Coauthors, 2001: Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Global Change Biol., 7 , 357373.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., K. W. Oleson, G. Bonan, F. Hoffman, P. Thornton, M. Vertenstein, Z-L. Yang, and X. Zeng, 2006: The Community Land Model and its climate statistics as a component of the Community Climate System Model. J. Climate, 19 , 23022324.

    • Search Google Scholar
    • Export Citation
  • Eastman, J. L., M. B. Coughenour, and R. A. Pielke Sr., 2001: The regional effects of CO2 and landscape change using a coupled plant and meteorological model. Global Change Biol., 7 , 797815.

    • Search Google Scholar
    • Export Citation
  • Elvidge, C. D., and Coauthors, 2004: Urbanization. Land Change Science: Observing, Monitoring, and Understanding Trajectories of Change on the Earth’s Surface, G. Gutman et al., Eds., Kluwer, 315–328.

    • Search Google Scholar
    • Export Citation
  • Feddema, J. J., K. W. Oleson, G. B. Bonan, L. O. Mearns, L. E. Buja, G. A. Meehl, and W. M. Washington, 2005: The importance of land-cover change in simulating future climates. Science, 310 , 16741678.

    • Search Google Scholar
    • Export Citation
  • Foley, J. A., and Coauthors, 2005: Global consequences of land use. Science, 309 , 570574.

  • Grimmond, C. S. B., 2006: Progress in measuring and observing the urban atmosphere. Theor. Appl. Climatol., 84 , 322.

  • Grimmond, C. S. B., and T. R. Oke, 1999a: Aerodynamic properties of urban areas derived from analysis of surface form. J. Appl. Meteor., 38 , 12621292.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and T. R. Oke, 1999b: Heat storage in urban areas: Local-scale observations and evaluation of a simple model. J. Appl. Meteor., 38 , 922940.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and T. R. Oke, 2002: Turbulent heat fluxes in urban areas: Observations and a local-scale urban meteorological parameterization scheme (LUMPS). J. Appl. Meteor., 41 , 792810.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., H. A. Cleugh, and T. R. Oke, 1991: An objective urban heat storage model and its comparison with other schemes. Atmos. Environ., 25B , 311326.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

    • Search Google Scholar
    • Export Citation
  • Lemonsu, A., and V. Masson, 2002: Simulation of a summer urban breeze over Paris. Bound.-Layer Meteor., 104 , 463490.

  • Lemonsu, A., C. S. B. Grimmond, and V. Masson, 2004: Modeling the surface energy balance of the core of an old Mediterranean city: Marseille. J. Appl. Meteor., 43 , 312327.

    • Search Google Scholar
    • Export Citation
  • Macdonald, R. W., R. F. Griffiths, and D. J. Hall, 1998: An improved method for the estimation of surface roughness of obstacle arrays. Atmos. Environ., 32 , 18571864.

    • Search Google Scholar
    • Export Citation
  • Martilli, A., A. Clappier, and M. W. Rotach, 2002: An urban surface exchange parameterization for mesoscale models. Bound.-Layer Meteor., 104 , 261304.

    • Search Google Scholar
    • Export Citation
  • Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospheric models. Bound.-Layer Meteor., 94 , 357397.

  • Masson, V., 2006: Urban surface modeling and the meso-scale impact of cities. Theor. Appl. Climatol., 84 , 3545.

  • Masson, V., C. S. B. Grimmond, and T. R. Oke, 2002: Evaluation of the Town Energy Balance (TEB) scheme with direct measurements from dry districts in two cities. J. Appl. Meteor., 41 , 10111026.

    • Search Google Scholar
    • Export Citation
  • Offerle, B., C. S. B. Grimmond, and T. R. Oke, 2003: Parameterization of net all-wave radiation for urban areas. J. Appl. Meteor., 42 , 11571173.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1987: Boundary Layer Climates. 2nd ed. Routledge, 435 pp.

  • Oke, T. R., and H. A. Cleugh, 1987: Urban heat storage derived as energy balance residuals. Bound.-Layer Meteor., 39 , 233245.

  • Oke, T. R., R. A. Spronken-Smith, E. Jáuregui, and C. S. B. Grimmond, 1999: The energy balance of central Mexico City during the dry season. Atmos. Environ., 33 , 39193930.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2004: Technical description of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-461+STR, 173 pp.

  • Oleson, K. W., G. B. Bonan, J. Feddema, and M. Vertenstein, 2008: An urban parameterization for a global climate model. Part II: Sensitivity to input parameters and the simulated urban heat island in offline simulations. J. Appl. Meteor. Climatol., 47 , 10611076.

    • Search Google Scholar
    • Export Citation
  • Pielke Sr., R. A., G. Marland, R. A. Betts, T. N. Chase, J. L. Eastman, J. O. Niles, D. D. S. Niyogi, and S. W. Running, 2002: The influence of land-use change and landscape dynamics on the climate system: Relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philos. Trans. Roy. Soc. London, 360A , 17051719.

    • Search Google Scholar
    • Export Citation
  • Pigeon, G., A. Lemonsu, C. S. B. Grimmond, P. Durand, O. Thouron, and V. Masson, 2007: Divergence of turbulent fluxes in the surface layer: Case of a coastal city. Bound.-Layer Meteor., 124 , 269290.

    • Search Google Scholar
    • Export Citation
  • Piringer, M., and Coauthors, 2002: Investigating the surface energy balance in urban areas—recent advances and future needs. Water Air Soil Pollut. Focus, 2 , 116.

    • Search Google Scholar
    • Export Citation
  • Prata, A. J., 1996: A new long-wave formula for estimating downward clear-sky radiation at the surface. Quart. J. Roy. Meteor. Soc., 122 , 11271151.

    • Search Google Scholar
    • Export Citation
  • Rowley, F. B., A. B. Algren, and J. L. Blackshaw, 1930: Surface conductances as affected by air velocity, temperature, and character of surface. ASHRAE Trans., 36 , 429446.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1997: Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science, 275 , 502509.

    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., 2005: A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interactions, 9 .[Available online at http://EarthInteractions.org.].

    • Search Google Scholar
    • Export Citation
  • Sparrow, E. M., and R. D. Cess, 1978: Radiation Heat Transfer. Hemisphere, 366 pp.

  • Taha, H., 1999: Modifying a mesoscale meteorological model to better incorporate urban heat storage: A bulk-parameterization approach. J. Appl. Meteor., 38 , 466473.

    • Search Google Scholar
    • Export Citation
  • Voogt, J. A., and C. S. B. Grimmond, 2000: Modeling surface sensible heat flux using surface radiative temperatures in a simple urban area. J. Appl. Meteor., 39 , 16791699.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1979 927 50
PDF Downloads 882 321 24