Hurricane “Rainfall Potential” Derived from Satellite Observations Aids Overland Rainfall Prediction

Haiyan Jiang Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, and Mesoscale Atmospheric Processes Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Haiyan Jiang in
Current site
Google Scholar
PubMed
Close
,
Jeffrey B. Halverson Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by Jeffrey B. Halverson in
Current site
Google Scholar
PubMed
Close
,
Joanne Simpson Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Joanne Simpson in
Current site
Google Scholar
PubMed
Close
, and
Edward J. Zipser Department of Meteorology, University of Utah, Salt Lake City, Utah

Search for other papers by Edward J. Zipser in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Tropical Rainfall Measuring Mission–based National Aeronautics and Space Administration Goddard Multisatellite Precipitation Analysis (MPA) product is used to quantify the rainfall distribution in tropical cyclones that made landfall in the United States during 1998–2004. A total of 37 tropical cyclones (TC) are examined, including 2680 three-hourly MPA precipitation observations. Rainfall distributions for overland and overocean observations are compared. It is found that the TC rainfall over ocean bears a strong relationship with the TC maximum wind, whereas the relationship for overland conditions is much weaker. The rainfall potential is defined by using the satellite-derived rain rate, the satellite-derived storm size, and the storm translation speed. This study examines the capability of the overocean rainfall potential to predict a storm’s likelihood of producing heavy rain over land. High correlations between rain potentials before landfall and the maximum storm total rain over land are found using the dataset of the 37 landfalling TCs. Correlations are higher with the average rain potential on the day prior to landfall than with averages over any other time period. A TC overland rainfall index is introduced based on the rainfall potential study. This index can be used to predict the storm peak rainfall accumulation over land. Six landfalling storms during the 2005 Atlantic Ocean hurricane season are examined to verify the capability of using this index to forecast the maximum storm total rain over land in the United States. The range of the maximum storm overland rain forecast error for these six storms is between 2.5% and 24.8%.

* Current affiliation: Department of Meteorology, University of Utah, Salt Lake City, Utah

Corresponding author address: Dr. Haiyan Jiang, 135 S 1460 E, Rm. 819 WBB, Salt Lake City, UT 84112. Email: h.jiang@utah.edu

Abstract

The Tropical Rainfall Measuring Mission–based National Aeronautics and Space Administration Goddard Multisatellite Precipitation Analysis (MPA) product is used to quantify the rainfall distribution in tropical cyclones that made landfall in the United States during 1998–2004. A total of 37 tropical cyclones (TC) are examined, including 2680 three-hourly MPA precipitation observations. Rainfall distributions for overland and overocean observations are compared. It is found that the TC rainfall over ocean bears a strong relationship with the TC maximum wind, whereas the relationship for overland conditions is much weaker. The rainfall potential is defined by using the satellite-derived rain rate, the satellite-derived storm size, and the storm translation speed. This study examines the capability of the overocean rainfall potential to predict a storm’s likelihood of producing heavy rain over land. High correlations between rain potentials before landfall and the maximum storm total rain over land are found using the dataset of the 37 landfalling TCs. Correlations are higher with the average rain potential on the day prior to landfall than with averages over any other time period. A TC overland rainfall index is introduced based on the rainfall potential study. This index can be used to predict the storm peak rainfall accumulation over land. Six landfalling storms during the 2005 Atlantic Ocean hurricane season are examined to verify the capability of using this index to forecast the maximum storm total rain over land in the United States. The range of the maximum storm overland rain forecast error for these six storms is between 2.5% and 24.8%.

* Current affiliation: Department of Meteorology, University of Utah, Salt Lake City, Utah

Corresponding author address: Dr. Haiyan Jiang, 135 S 1460 E, Rm. 819 WBB, Salt Lake City, UT 84112. Email: h.jiang@utah.edu

Save
  • Adler, R. F., A. J. Negri, P. R. Keehn, and I. M. Hakkarinen, 1993: Estimation of monthly rainfall over Japan and surrounding waters from a combination of low-orbit microwave and geosynchronous IR data. J. Appl. Meteor., 32 , 335356.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., G. J. Huffman, and P. R. Keehn, 1994: Global tropical rain estimates from microwave-adjusted geosynchronous IR data. Remote Sens. Rev., 11 , 125152.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2003: The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4 , 11471167.

    • Search Google Scholar
    • Export Citation
  • Atallah, E. H., 2002: An evaluation of precipitation distribution in landfalling tropical cyclones. Preprints. 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 339–340.

    • Search Google Scholar
    • Export Citation
  • Atallah, E. H., and L. F. Bosart, 2003: The extratropical transition and precipitation distribution of Hurricane Floyd (1999). Mon. Wea. Rev., 131 , 10631081.

    • Search Google Scholar
    • Export Citation
  • Carr, F. H., and L. F. Bosart, 1978: A diagnostic evaluation of rainfall predictability for tropicalstorm Agnes, June 1972. Mon. Wea. Rev., 106 , 363374.

    • Search Google Scholar
    • Export Citation
  • Demuth, J. L., M. DeMaria, and J. A. Knaff, 2006: Improvement of Advanced Microwave Sounding Unit tropical cyclone intensity and size estimation algorithms. J. Appl. Meteor. Climatol., 45 , 15731581.

    • Search Google Scholar
    • Export Citation
  • DiMego, G. J., and L. F. Bosart, 1982: The transformation of Tropical Storm Agnes into an extratropical cyclone. Part II: Moisture, vorticity, and kinetic energy budgets. Mon. Wea. Rev., 110 , 412433.

    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., 2002: Predicting hurricane landfall precipitation. Bull. Amer. Meteor. Soc., 83 , 13331340.

  • Elsberry, R. L., 2005: Achievement of USWRP hurricane landfall research goal. Bull. Amer. Meteor. Soc., 86 , 643645.

  • Ferraro, R., and Coauthors, 2005: The tropical rainfall potential (TRaP) technique. Part II: Validation. Wea. Forecasting, 20 , 465475.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., G. M. Heymsfield, L. Tian, J. B. Halverson, A. Guillory, and M. I. Mejia, 2000: Hurricane Georges’s landfall in the Dominican Republic: Detailed airborne Doppler radar imagery. Bull. Amer. Meteor. Soc., 81 , 9991018.

    • Search Google Scholar
    • Export Citation
  • Griffith, C. G., W. L. Woodley, P. G. Gube, D. W. Martin, J. Stout, and D. N. Sikdar, 1978: Rain estimates from geosynchronous satellite imagery: Visible and infrared studies. Mon. Wea. Rev., 106 , 11531171.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., J. B. Halverson, J. Simpson, L. Tian, and T. P. Bui, 2001: ER-2 Doppler radar investigations of the eyewall of Hurricane Bonnie during the Convection and Moisture Experiment-3. J. Appl. Meteor., 40 , 13101330.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2 , 3650.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8 , 3855.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., J. B. Halverson, and J. Simpson, 2008a: On the difference of storm rainfall of Hurricanes Isidore and Lili. Part I: Satellite observations and rain potential. Wea. Forecasting, 23 , 2943.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., J. B. Halverson, J. Simpson, and E. J. Zipser, 2008b: On the difference of storm rainfall of Hurricanes Isidore and Lili. Part II: Water budget. Wea. Forecasting, 23 , 4461.

    • Search Google Scholar
    • Export Citation
  • Kidder, S. Q., M. D. Goldberg, R. M. Zehr, M. DeMaria, J. F. W. Purdom, C. S. Velden, N. C. Grody, and S. J. Kusselson, 2000: Satellite analysis of tropical cyclones using the Advanced Microwave Sounding Unit (AMSU). Bull. Amer. Meteor. Soc., 81 , 12411259.

    • Search Google Scholar
    • Export Citation
  • Kidder, S. Q., J. A. Knaff, S. J. Kusselson, M. Turk, R. R. Ferraro, and R. J. Kuligowski, 2005: The tropical rainfall potential (TRaP) technique. Part I: Description and examples. Wea. Forecasting, 20 , 456464.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. S. Olson, and L. Giglio, 1996: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote Sens., 34 , 12131232.

    • Search Google Scholar
    • Export Citation
  • Lonfat, M., F. D. Marks, and S. S. Chen, 2004: Precipitation distribution in tropical cyclones using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager: A global perspective. Mon. Wea. Rev., 132 , 16451660.

    • Search Google Scholar
    • Export Citation
  • Lonfat, M., R. Rogers, T. Marchok, and F. D. Marks Jr., 2007: A parametric model for predicting hurricane rainfall. Mon. Wea. Rev., 135 , 30863097.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., C. F. Chappell, and L. R. Hoxit, 1979: Synoptic and mesoscale aspects of flash flood events. Bull. Amer. Meteor. Soc., 60 , 115123.

    • Search Google Scholar
    • Export Citation
  • Malkus, J., and H. Riehl, 1960: On the dynamics and energy transformations in steady-state hurricanes. Tellus, 12 , 120.

  • Miller, B. I., 1958: Rainfall rates in Florida hurricanes. Mon. Wea. Rev., 86 , 258264.

  • Rao, G. V., and P. D. MacArthur, 1994: The SSM/I estimated rainfall amounts of tropical cyclones and their potential in predicting the cyclone intensity changes. Mon. Wea. Rev., 122 , 15681574.

    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., 2000: Loss of life in the United States associated with recent Atlantic tropical cyclones. Bull. Amer. Meteor. Soc., 81 , 20652074.

    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., and R. F. Adler, 1981: Tropical cyclone rainfall characteristics as determined from a satellite passive microwave radiometer. Mon. Wea. Rev., 109 , 506521.

    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., and H. F. Pierce, 1995: A satellite observational study of precipitation characteristics in western North Pacific tropical cyclones. J. Appl. Meteor., 34 , 25872599.

    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., S. W. Chang, and H. F. Pierce, 1994: A satellite observational and numerical study of precipitation characteristics in western North Atlantic tropical cyclones. J. Appl. Meteor., 33 , 129139.

    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., W. Olson, J. Halverson, J. Simpson, and H. F. Pierce, 2000: Environmental forcing of Supertyphoon Paka’s (1997) latent heat structure. J. Appl. Meteor., 39 , 19832006.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., S. Chen, J. Tenerelli, and H. Willoughby, 2003: A numerical study of the impact of vertical shear on the distribution of rainfall in Hurricane Bonnie (1998). Mon. Wea. Rev., 131 , 15771599.

    • Search Google Scholar
    • Export Citation
  • Weng, F., L. Zhao, R. Ferraro, G. Poe, X. Li, and N. Grody, 2003: Advanced Microwave Sounding Unit cloud and precipitation algorithms. Radio Sci., 38 , 80688079.

    • Search Google Scholar
    • Export Citation
  • Zhao, L., and F. Weng, 2002: Retrieval of ice cloud parameters using the Advanced Microwave Sounding Unit. J. Appl. Meteor., 41 , 384395.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 373 114 9
PDF Downloads 280 90 7