Dynamic LES Modeling of a Diurnal Cycle

Sukanta Basu Atmospheric Science Group, Department of Geosciences, Texas Tech University, Lubbock, Texas

Search for other papers by Sukanta Basu in
Current site
Google Scholar
PubMed
Close
,
Jean-François Vinuesa European Commission–DG Joint Research Centre, Institute for Environment and Sustainability, Ispra, Italy

Search for other papers by Jean-François Vinuesa in
Current site
Google Scholar
PubMed
Close
, and
Andrew Swift Wind Science and Engineering Research Center, Texas Tech University, Lubbock, Texas

Search for other papers by Andrew Swift in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The diurnally varying atmospheric boundary layer observed during the Wangara (Australia) case study is simulated using the recently proposed locally averaged scale-dependent dynamic subgrid-scale (SGS) model. This tuning-free SGS model enables one to dynamically compute the Smagorinsky coefficient and the subgrid-scale Prandtl number based on the local dynamics of the resolved velocity and temperature fields. It is shown that this SGS-model-based large-eddy simulation (LES) has the ability to faithfully reproduce the characteristics of observed atmospheric boundary layers even with relatively coarse resolutions. In particular, the development, magnitude, and location of an observed nocturnal low-level jet are depicted quite well. Some well-established empirical formulations (e.g., mixed layer scaling, spectral scaling) are recovered with good accuracy by this SGS parameterization. The application of this new-generation dynamic SGS modeling approach is also briefly delineated to address several practical wind-energy-related issues.

Corresponding author address: Sukanta Basu, Atmospheric Science Group, Department of Geosciences, Texas Tech University, Lubbock, TX 79409. Email: sukanta.basu@ttu.edu

Abstract

The diurnally varying atmospheric boundary layer observed during the Wangara (Australia) case study is simulated using the recently proposed locally averaged scale-dependent dynamic subgrid-scale (SGS) model. This tuning-free SGS model enables one to dynamically compute the Smagorinsky coefficient and the subgrid-scale Prandtl number based on the local dynamics of the resolved velocity and temperature fields. It is shown that this SGS-model-based large-eddy simulation (LES) has the ability to faithfully reproduce the characteristics of observed atmospheric boundary layers even with relatively coarse resolutions. In particular, the development, magnitude, and location of an observed nocturnal low-level jet are depicted quite well. Some well-established empirical formulations (e.g., mixed layer scaling, spectral scaling) are recovered with good accuracy by this SGS parameterization. The application of this new-generation dynamic SGS modeling approach is also briefly delineated to address several practical wind-energy-related issues.

Corresponding author address: Sukanta Basu, Atmospheric Science Group, Department of Geosciences, Texas Tech University, Lubbock, TX 79409. Email: sukanta.basu@ttu.edu

Save
  • Acevedo, O. C., and D. R. Fitzjarrald, 2001: The early evening surface-layer transition: Temporal and spatial variability. J. Atmos. Sci., 58 , 26502667.

    • Search Google Scholar
    • Export Citation
  • Alapaty, K., J. E. Pleim, S. Raman, D. S. Niyogi, and D. W. Byun, 1997: Simulation of atmospheric boundary layer processes using local- and nonlocal-closure schemes. J. Appl. Meteor., 36 , 214233.

    • Search Google Scholar
    • Export Citation
  • Albertson, J. D., and M. B. Parlange, 1999: Natural integration of scalar fluxes from complex terrain. Adv. Water Res., 23 , 239252.

  • Anderson, W. C., S. Basu, and C. W. Letchford, 2007: Comparison of dynamic subgrid-scale models for simulations of neutrally buoyant shear-driven atmospheric boundary layer flows. Environ. Fluid Mech., 7 , 195215.

    • Search Google Scholar
    • Export Citation
  • André, J. C., G. De Moor, P. Lacarrère, and R. du Vachat, 1978: Modeling the 24-hour evolution of the mean and turbulent structures of the planetary boundary layer. J. Atmos. Sci., 35 , 18611883.

    • Search Google Scholar
    • Export Citation
  • Andren, A., 1995: The structure of stably stratified atmospheric boundary layers: A large-eddy simulation study. Quart. J. Roy. Meteor. Soc., 121 , 961985.

    • Search Google Scholar
    • Export Citation
  • Andren, A., A. R. Brown, P. J. Mason, J. Graf, U. Schumann, C-H. Moeng, and F. T. M. Nieuwstadt, 1994: Large-eddy simulation of a neutrally stratified boundary layer: A comparison of four computer codes. Quart. J. Roy. Meteor. Soc., 120 , 14571484.

    • Search Google Scholar
    • Export Citation
  • Archer, C. L., and M. Z. Jacobson, 2003: Spatial and temporal distributions of U.S. winds and wind power at 80 m derived from measurements. J. Geophys. Res., 108 .4289, doi:10.1029/2002JD002076.

    • Search Google Scholar
    • Export Citation
  • Arya, S. P., 2001: Introduction to Micrometeorology. International Geophysical Series, Vol. 79, 2nd ed., Academic Press, 420 pp.

  • Banta, R. M., R. K. Newsom, J. K. Lunquist, Y. L. Pichugina, R. L. Coulter, and L. Mahrt, 2002: Nocturnal low-level jet characteristics over Kansas during CASES-99. Bound.-Layer Meteor., 105 , 221252.

    • Search Google Scholar
    • Export Citation
  • Basu, S., and F. Porté-Agel, 2006: Large-eddy simulation of stably stratified atmospheric boundary layer turbulence: A scale-dependent dynamic modeling approach. J. Atmos. Sci., 63 , 20742091.

    • Search Google Scholar
    • Export Citation
  • Basu, S., F. Porté-Agel, E. Foufoula-Georgiou, J-F. Vinuesa, and M. Pahlow, 2006: Revisiting the local scaling hypothesis in stably stratified atmospheric boundary-layer turbulence: An integration of field and laboratory measurements with large-eddy simulations. Bound.-Layer Meteor., 119 , 473500.

    • Search Google Scholar
    • Export Citation
  • Beare, R. J., and Coauthors, 2006a: An intercomparison of large-eddy simulations of the stable boundary layer. Bound.-Layer Meteor., 118 , 247272.

    • Search Google Scholar
    • Export Citation
  • Beare, R. J., J. M. Edwards, and A. J. Lapworth, 2006b: Simulation of the observed evening transition and nocturnal boundary layers: Large-eddy simulation. Quart. J. Roy. Meteor. Soc., 132 , 8199.

    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1968: Climatology of the low level jet. Mon. Wea. Rev., 96 , 833850.

  • Bou-Zeid, E., C. Meneveau, and M. B. Parlange, 2005: A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys. Fluids, 17 .025105, doi:10.1063/1.1839152.

    • Search Google Scholar
    • Export Citation
  • Brown, A. R., S. H. Derbyshire, and P. J. Mason, 1994: Large-eddy simulation of stable atmospheric boundary layers with a revised stochastic subgrid model. Quart. J. Roy. Meteor. Soc., 120 , 14851512.

    • Search Google Scholar
    • Export Citation
  • Brown, A. R., and Coauthors, 2002: Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land. Quart. J. Roy. Meteor. Soc., 128 , 10751093.

    • Search Google Scholar
    • Export Citation
  • Cederwall, R. T., 2002: Large-eddy simulation of the evolving stable boundary layer over flat terrain. Ph.D. thesis, Stanford University, 231 pp.

  • Chen, C., and W. R. Cotton, 1983: Numerical experiments with a one-dimensional higher order turbulence model: Simulation of the Wangara Day 33 case. Bound.-Layer Meteor., 25 , 375404.

    • Search Google Scholar
    • Export Citation
  • Chow, F. K., R. L. Street, M. Xue, and J. H. Ferziger, 2005: Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow. J. Atmos. Sci., 62 , 20582077.

    • Search Google Scholar
    • Export Citation
  • Clarke, R. H., A. J. Dyer, R. R. Brook, D. G. Reid, and A. J. Troup, 1971: The Wangara experiment: Boundary layer data. Division of Meteorological Physics Tech. Paper 19, 362 pp.

  • Deardorff, J. W., 1970: Preliminary results from numerical integrations of the unstable planetary boundary layer. J. Atmos. Sci., 27 , 12091211.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1972: Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci., 29 , 91115.

  • Deardorff, J. W., 1974a: Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer. Bound.-Layer Meteor., 7 , 81106.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1974b: Three-dimensional numerical study of turbulence in an entraining mixed layer. Bound.-Layer Meteor., 7 , 199226.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18 , 495527.

  • Duynkerke, P. G., and Coauthors, 2004: Observations and numerical simulations of the diurnal cycle of the EUROCS stratocumulus case. Quart. J. Roy. Meteor. Soc., 130 , 32693296.

    • Search Google Scholar
    • Export Citation
  • Esau, I., 2004: Simulation of Ekman boundary layers by large eddy model with dynamic mixed subfilter closure. Environ. Fluid Mech., 4 , 273303.

    • Search Google Scholar
    • Export Citation
  • Fedorovich, E., and Coauthors, 2004: Entrainment into sheared convective boundary layers as predicted by different large eddy simulation codes. Preprints, 16th Symp. on Boundary Layers and Turbulence, Portland, ME, Amer. Meteor. Soc., P4.7.

  • Geurts, B. J., 2003: Elements of Direct and Large-Eddy Simulation. R. T. Edwards, 388 pp.

  • Giebel, G., and S-E. Gryning, 2004: Shear and stability in high met masts, and how WAsP treats it. Proc. Special Topic Conference on the Science of Making Torque from Wind, Delft, Netherlands, European Wind Energy Association, B2.

    • Search Google Scholar
    • Export Citation
  • Hess, G. D., B. B. Hicks, and T. Yamada, 1981: The impact of the Wangara experiment. Bound.-Layer Meteor., 20 , 135174.

  • Hicks, B. B., 1981: An analysis of Wangara micrometeorology: Surface stress, sensible heat, evaporation, and dewfall. NOAA Tech. Memo. ERL ARL-104, NOAA/Air Resources Laboratories, Silver Spring, MD, 36 pp.

  • Izumi, Y., and J. S. Caughey, 1976: Minnesota 1973 atmospheric boundary layer experiment data report. AFGL Environmental Research Paper 547, 28 pp.

  • Kaimal, J. C., 1972: Turbulence spectra, length scales and structure parameters in the stable surface layer. Bound.-Layer Meteor., 4 , 289309.

    • Search Google Scholar
    • Export Citation
  • Kelley, N., M. Shirazi, D. Jager, S. Wilde, J. Adams, M. Buhl, P. Sullivan, and E. Patton, 2004: Lamar low-level jet project interim report. National Renewable Energy Laboratory Tech. Rep. NREL/TP-500-34593, 216 pp.

  • Khanna, S., and J. G. Brasseur, 1997: Analysis of Monin-Obukhov similarity from large-eddy simulation. J. Fluid Mech., 345 , 251286.

  • Kim, S. B., K. Yamaguchi, A. Kondo, and S. Soda, 2003: A comparative study of the Mellor–Yamada and kϵ two-equation turbulence models in atmospheric application. J. Wind Eng. Ind. Aerodyn., 91 , 791806.

    • Search Google Scholar
    • Export Citation
  • Kleissl, J., C. Meneveau, and M. B. Parlange, 2003: On the magnitude and variability of subgrid-scale eddy-diffusion coefficients in the atmospheric surface layer. J. Atmos. Sci., 60 , 23722388.

    • Search Google Scholar
    • Export Citation
  • Kosović, B., 1997: Subgrid-scale modelling for the large-eddy simulation of high-Reynolds-number boundary layers. J. Fluid Mech., 336 , 151182.

    • Search Google Scholar
    • Export Citation
  • Kosović, B., and J. A. Curry, 2000: A large eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer. J. Atmos. Sci., 57 , 10521068.

    • Search Google Scholar
    • Export Citation
  • Lee, S-M., W. Giori, M. Princevac, and H. J. S. Fernando, 2006: Implementation of a stable PBL turbulence parameterization for the mesoscale model MM5: Nocturnal flow in complex terrain. Bound.-Layer Meteor., 119 , 109134.

    • Search Google Scholar
    • Export Citation
  • Lewellen, D. C., and W. S. Lewellen, 1998: Large-eddy boundary layer entrainment. J. Atmos. Sci., 55 , 26452665.

  • Lin, C-L., J. C. McWilliams, C-H. Moeng, and P. P. Sullivan, 1996: Coherent structures and dynamics in a neutrally stratified planetary boundary layer flow. Phys. Fluids, 8 , 26262639.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., R. C. Heald, D. H. Lenschow, B. B. Stankov, and I. Troen, 1979: An observational study of the structure of the nocturnal boundary layer. Bound.-Layer Meteor., 17 , 247264.

    • Search Google Scholar
    • Export Citation
  • Mason, P. J., 1989: Large-eddy simulation of the convective atmospheric boundary layer. J. Atmos. Sci., 46 , 14921516.

  • Mason, P. J., and D. J. Thomson, 1987: Large-eddy simulations of the neutral-static-stability planetary boundary layer. Quart. J. Roy. Meteor. Soc., 113 , 413443.

    • Search Google Scholar
    • Export Citation
  • Mason, P. J., and S. H. Derbyshire, 1990: Large-eddy simulation of the stably-stratified atmospheric boundary layer. Bound.-Layer Meteor., 53 , 117162.

    • Search Google Scholar
    • Export Citation
  • Moeng, C-H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41 , 20522062.

  • Moeng, C-H., and P. P. Sullivan, 1994: A comparison of shear- and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51 , 9991022.

    • Search Google Scholar
    • Export Citation
  • Musson-Genon, L., 1995: Comparison of different simple turbulence closures with a one-dimensional boundary layer model. Mon. Wea. Rev., 123 , 163180.

    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M., 1984: The turbulent structure of the stable, nocturnal boundary layer. J. Atmos. Sci., 41 , 22022216.

  • Nieuwstadt, F. T. M., 1985: A model for the stationary, stable boundary layer. Turbulence and Diffusion in Stable Environments, J. C. R. Hunt, Ed., Clarendon Press, 149–179.

    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M., and R. A. Brost, 1986: The decay of convective turbulence. J. Atmos. Sci., 43 , 532546.

  • Nieuwstadt, F. T. M., P. J. Mason, C-H. Moeng, and U. Schumann, 1992: Large-eddy simulation of the convective boundary layer: A comparison of four computer codes. Turbulent Shear Flows 8: Selected Papers from the Eighth International Symposium on Turbulent Shear Flows, F. Durst et al., Eds., Springer-Verlag, 343–367.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., and Y. Mahrer, 1975: Representation of the heated planetary boundary layer in mesoscale models with coarse vertical resolution. J. Atmos. Sci., 32 , 22882308.

    • Search Google Scholar
    • Export Citation
  • Pino, D., H. J. J. Jonker, J. Vilà-Guerau de Arellano, and A. Dosio, 2006: Role of shear and the inversion strength during sunset turbulence over land: Characteristic length scales. Bound.-Layer Meteor., 121 , 537556.

    • Search Google Scholar
    • Export Citation
  • Porté-Agel, F., C. Meneveau, and M. B. Parlange, 2000: A scale-dependent dynamic model for large-eddy simulations: Application to a neutral atmospheric boundary layer. J. Fluid Mech., 415 , 261284.

    • Search Google Scholar
    • Export Citation
  • Porté-Agel, F., M. B. Parlange, C. Meneveau, and W. E. Eichinger, 2001: A priori field study of the subgrid-scale heat fluxes and dissipation in the atmospheric surface layer. J. Atmos. Sci., 58 , 26732698.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, N., K. Srinivasan, and B. V. Seshasayee, 1995: Numerical simulation of boundary layer variables using ēϵ closure scheme. J. Appl. Meteor., 34 , 542548.

    • Search Google Scholar
    • Export Citation
  • Saiki, E. M., C-H. Moeng, and P. P. Sullivan, 2000: Large-eddy simulation of the stably stratified planetary boundary layer. Bound.-Layer Meteor., 95 , 130.

    • Search Google Scholar
    • Export Citation
  • Savijärvi, H., 1991: The United States Great Plains diurnal ABL variation and the nocturnal low-level jet. Mon. Wea. Rev., 119 , 833840.

    • Search Google Scholar
    • Export Citation
  • Schmidt, H., and U. Schumann, 1989: Coherent structure of the convective boundary layer derived from large-eddy simulation. J. Fluid Mech., 200 , 511562.

    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 1997: Decay of convective turbulence revisited. Bound.-Layer Meteor., 82 , 501515.

  • Starchenko, A. V., and A. S. Karyakin, 2000: Simulation of turbulent transport during 24-hour evolution of the atmospheric boundary layer. Seventh International Symposium on Atmospheric and Ocean Optics, G. G. Matvienko, and M. V. Panchenko, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 4341), 626–633.

    • Search Google Scholar
    • Export Citation
  • Stoll, R., and F. Porté-Agel, 2006: Dynamic subgrid-scale models for momentum and scalar fluxes in large-eddy simulations of neutrally stratified atmospheric boundary layers over heterogeneous terrain. Water Resour. Res., 42 .W01409, doi:10.1029/2005WR003989.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P., C-H. Moeng, B. Stevens, D. H. Lenschow, and S. D. Mayor, 1998: Structure of the entrainment zone capping the convective atmospheric boundary layer. J. Atmos. Sci., 55 , 30423064.

    • Search Google Scholar
    • Export Citation
  • Sun, W-Y., and Y. Ogura, 1980: Modeling the evolution of the convective planetary boundary layer. J. Atmos. Sci., 37 , 15581572.

  • Sun, W-Y., and C-Z. Chang, 1986: Diffusion model for a convective layer. Part I: Numerical simulation of convective boundary layer. J. Climate Appl. Meteor., 25 , 14451453.

    • Search Google Scholar
    • Export Citation
  • Sykes, R. I., and D. S. Henn, 1989: Large-eddy simulation of turbulent sheared convection. J. Atmos. Sci., 46 , 11061118.

  • van de Wiel, B. J. H., 2002: Intermittent turbulence and oscillations in the stable boundary layer over land. Ph.D. thesis, Wageningen University, 129 pp.

  • Willis, G. E., and J. W. Deardorff, 1974: A laboratory model of the unstable planetary boundary layer. J. Atmos. Sci., 31 , 12971307.

  • Wyngaard, J. C., and O. R. Coté, 1974: The evolution of a convective planetary boundary layer—A higher-order-closure model study. Bound.-Layer Meteor., 7 , 289308.

    • Search Google Scholar
    • Export Citation
  • Xue, M., J. Zong, and K. K. Drogemeier, 1996: Parameterization of PBL turbulence in a multi-scale nonhydrostatic model. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., P2.5.

  • Yamada, T., 1976: On the similarity functions A, B and C of the planetary boundary layer. J. Atmos. Sci., 33 , 781793.

  • Yamada, T., and G. Mellor, 1975: A simulation of the Wangara atmospheric boundary layer data. J. Atmos. Sci., 32 , 23092329.

  • Zhong, S., J. D. Fast, and X. Bian, 1996: A case study of the Great Plains low-level jet using wind profiler network data and a high-resolution mesoscale model. Mon. Wea. Rev., 124 , 785806.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 344 116 1
PDF Downloads 218 69 1