A Method to Derive the Multispectral Surface Albedo Consistent with MODIS from Historical AVHRR and VGT Satellite Data

Alexander P. Trishchenko Canada Centre for Remote Sensing, Earth Sciences Sector, Natural Resources Canada, Ottawa, Ontario, Canada

Search for other papers by Alexander P. Trishchenko in
Current site
Google Scholar
PubMed
Close
,
Yi Luo Canada Centre for Remote Sensing, Earth Sciences Sector, Natural Resources Canada, Ottawa, Ontario, Canada

Search for other papers by Yi Luo in
Current site
Google Scholar
PubMed
Close
,
Konstantin V. Khlopenkov Canada Centre for Remote Sensing, Earth Sciences Sector, Natural Resources Canada, Ottawa, Ontario, Canada

Search for other papers by Konstantin V. Khlopenkov in
Current site
Google Scholar
PubMed
Close
, and
Shusen Wang Canada Centre for Remote Sensing, Earth Sciences Sector, Natural Resources Canada, Ottawa, Ontario, Canada

Search for other papers by Shusen Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Multispectral surface albedo and bidirectional properties are required for accurate determination of the surface and atmosphere solar radiation budget. A method is developed here to obtain time series of these surface characteristics consistent with the Moderate Resolution Imaging Spectroradiometer (MODIS) using historical satellite observations with limited spectral coverage available from NOAA Advanced Very High Resolution Radiometer (AVHRR) and VEGETATION/Satellite pour l’Observation de la Terre (SPOT). A nonlinear regression model was developed that relates retrievals from four spectral channels of VEGETATION/SPOT or three spectral channels of NOAA AVHRR with retrieval from each of the seven MODIS channels designed for land applications. The model also takes into account the surface land cover type, the normalized difference vegetation index, and the seasonal cycle. It was applied to generate surface albedo and bidirectional parameters of the seven MODIS-like spectral channels at a 10-day interval for the 1995–2004 period over the U.S. southern Great Plains. The relative retrieval accuracy for the MODIS channels replicated from AVHRR or VEGETATION/SPOT data was typically better than 5%. Correlation coefficients between replicated and original data varied from 0.92 to 0.98 for all channels except MODIS channel 5, where it was lower (0.77–0.84). The developed method provides valuable information for parameterization of spectral albedo in global climate models and can be extended to generate global multispectral data compatible with MODIS from historical AVHRR and VEGETATION/SPOT observations for the pre-MODIS era.

Corresponding author address: Alexander P. Trishchenko, Canada Centre for Remote Sensing, Earth Sciences Sector, Natural Resources Canada, 588 Booth Street, Ottawa, ON K1A 0Y7, Canada. Email: trichtch@ccrs.nrcan.gc.ca

Abstract

Multispectral surface albedo and bidirectional properties are required for accurate determination of the surface and atmosphere solar radiation budget. A method is developed here to obtain time series of these surface characteristics consistent with the Moderate Resolution Imaging Spectroradiometer (MODIS) using historical satellite observations with limited spectral coverage available from NOAA Advanced Very High Resolution Radiometer (AVHRR) and VEGETATION/Satellite pour l’Observation de la Terre (SPOT). A nonlinear regression model was developed that relates retrievals from four spectral channels of VEGETATION/SPOT or three spectral channels of NOAA AVHRR with retrieval from each of the seven MODIS channels designed for land applications. The model also takes into account the surface land cover type, the normalized difference vegetation index, and the seasonal cycle. It was applied to generate surface albedo and bidirectional parameters of the seven MODIS-like spectral channels at a 10-day interval for the 1995–2004 period over the U.S. southern Great Plains. The relative retrieval accuracy for the MODIS channels replicated from AVHRR or VEGETATION/SPOT data was typically better than 5%. Correlation coefficients between replicated and original data varied from 0.92 to 0.98 for all channels except MODIS channel 5, where it was lower (0.77–0.84). The developed method provides valuable information for parameterization of spectral albedo in global climate models and can be extended to generate global multispectral data compatible with MODIS from historical AVHRR and VEGETATION/SPOT observations for the pre-MODIS era.

Corresponding author address: Alexander P. Trishchenko, Canada Centre for Remote Sensing, Earth Sciences Sector, Natural Resources Canada, 588 Booth Street, Ottawa, ON K1A 0Y7, Canada. Email: trichtch@ccrs.nrcan.gc.ca

Save
  • Ackerman, T. P., and G. M. Stokes, 2003: The Atmospheric Radiation Measurement Program. Phys. Today, 56 , 3843.

  • Ackerman, T. P., D. M. Flynn, and R. T. Marchand, 2003: Quantifying the magnitude of anomalous solar absorption. J. Geophys. Res., 108 .4273, doi:10.1029/2002JD002674.

    • Search Google Scholar
    • Export Citation
  • Barkstrom, B. R., E. F. Harrison, G. L. Smith, R. Green, J. Kibler, and R. Cess, and the ERBE Science Team, 1989: Earth Radiation Budget Experiment (ERBE) archival and April 1985 results. Bull. Amer. Meteor. Soc., 70 , 12541262.

    • Search Google Scholar
    • Export Citation
  • Barnsley, M. J., and Coauthors, 2000: Estimation of land-surface albedo and biophysical properties using SPOT-4 VGT and semi-empirical BRDF models. Proc. Vegetation 2000 Meeting, Ispra, Italy. [Available online at http://vegetation.cnes.fr/vgtprep/vgt2000/barnsley.pdf.].

    • Search Google Scholar
    • Export Citation
  • Bowker, D. E., R. E. Davis, D. L. Myrick, K. Stacy, and W. T. Jones, 1985: Spectral reflectances of natural targets for use in remote sensing studies. NASA Ref. Publ. 1139, 181 pp.

  • Briegleb, B. P., P. Minnis, V. Ramanathan, and E. Harrison, 1986: Comparison of regional clear-sky albedos inferred from satellite observations and model computations. J. Climate Appl. Meteor., 25 , 214226.

    • Search Google Scholar
    • Export Citation
  • Cao, C., M. Weinreb, and H. Xu, 2004: Predicting simultaneous nadir overpasses among polar-orbiting meteorological satellites for the intersatellite calibration of radiometers. J. Atmos. Oceanic Technol., 21 , 537542.

    • Search Google Scholar
    • Export Citation
  • Chandrasekhar, S., 1960: Radiative Transfer. Dover Publications, 393 pp.

  • Charney, J. G., W. J. Quirk, S-H. Chow, and J. Kornfield, 1977: A comparative study of the effects of albedo change on drought in semi-arid regions. J. Atmos. Sci., 34 , 13661385.

    • Search Google Scholar
    • Export Citation
  • Cihlar, J., and Coauthors, 2002: GeoComp-n, an advanced system for the processing of coarse and medium resolution satellite data. Part 2: Biophysical products for northern ecosystems. Can. J. Remote Sens., 28 , 2144.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+STR. [Available online at http://www.ccsm.ucar.edu/models/atm-cam/docs/description/.].

  • Csiszar, I., and G. Gutman, 1999: Mapping global land surface albedo from NOAA/AVHRR. J. Geophys. Res., 104 , 62156228.

  • Dickinson, R. E., 1983: Land surface processes and climate-surface albedos and energy balance. Advances in Geophysics, Vol. 25, Academic Press, 305–353.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and J. Shukla, 1994: Albedo as a modulator of climate response to tropical deforestation. J. Geophys. Res., 99 , 2086320878.

    • Search Google Scholar
    • Export Citation
  • Disney, M., P. Lewis, G. Thackrah, T. Quaife, and M. Barnsley, 2004: Comparison of MODIS broadband albedo over an agricultural site with ground measurements and values derived from Earth observation data at a range of spatial scales. Int. J. Remote Sens., 25 , 52975317.

    • Search Google Scholar
    • Export Citation
  • Duchemin, B., and P. Maisongrande, 2002: Normalization of directional effects in 10-day global syntheses derived from VEGETATION/SPOT: I. Investigation of concepts based on simulation. Remote Sens. Environ., 81 , 90100.

    • Search Google Scholar
    • Export Citation
  • Duchemin, B., B. Berthelot, G. Dedieu, M. Leroy, and P. Maisongrande, 2002: Normalization of directional effects in 10-day global syntheses derived from VEGETATION/SPOT: II. Validation of an operational method on actual data sets. Remote Sens. Environ., 81 , 101113.

    • Search Google Scholar
    • Export Citation
  • Goodrum, G., K. B. Kidwell, and W. Winston, cited. 2000: NOAA KLM user’s guide. NOAA/NESDIS. [Available online at http://www2.ncdc.noaa.gov/docs/klm/index.htm.].

  • Guenther, B., and Coauthors, 1998: Prelaunch algorithm and data format for the Level 1B calibration products for the EOS AM-1 Moderate Resolution Imaging Spectroradiometer (MODIS). IEEE Trans. Geosci. Remote Sens., 36 , 11421151.

    • Search Google Scholar
    • Export Citation
  • Hagolle, O., J-M. Nicolas, B. Fougnie, F. Cabot, and P. Henry, 2004: Absolute calibration of VEGETATION derived from an interband method based on the sun glint over ocean. IEEE Trans. Geosci. Remote Sens., 42 , 14721481.

    • Search Google Scholar
    • Export Citation
  • Halthore, R. N., and Coauthors, 2005: Intercomparison of shortwave radiative transfer codes and measurements. J. Geophys. Res., 110 .D11206, doi:10.1029/2004JD005293.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

    • Search Google Scholar
    • Export Citation
  • Huang, D., and Coauthors, 2007: Canopy spectral invariants for remote sensing and model applications. Remote Sens. Environ., 106 , 106122.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., E. J. Mlawer, S. A. Clough, and J-J. Morcrette, 2000: Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate model, CCM3. J. Geophys. Res., 105 , 1487314890.

    • Search Google Scholar
    • Export Citation
  • Kandel, R., and Coauthors, 1998: The ScaRaB earth radiation budget dataset. Bull. Amer. Meteor. Soc., 79 , 765783.

  • Kaufman, Y. J., and L. Remer, 1994: Detection of forests using mid-IR reflectance: An application for aerosol studies. IEEE Trans. Geosci. Remote Sens., 32 , 672683.

    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., D. Tanré, L. A. Remer, E. F. Vermote, A. Chu, and B. N. Holben, 1997: Operational remote sensing of tropospheric aerosol over the land from EOS-MODIS. J. Geophys. Res., 102 , 1705117068.

    • Search Google Scholar
    • Export Citation
  • Khlopenkov, K. V., and A. P. Trishchenko, 2007: SPARC: New cloud, snow, and cloud shadow detection scheme for historical 1-km AVHHR data over Canada. J. Atmos. Oceanic Technol., 24 , 322343.

    • Search Google Scholar
    • Export Citation
  • Kidwell, K. B., 1998: NOAA polar orbiter data user’s guide. NOAA/NESDIS, National Climatic Data Center, 412 pp. [Available online at http://www2.ncdc.noaa.gov/docs/podug/.].

  • Latifovic, R., and D. Pouliot, 2005: Multi-temporal landcover mapping for Canada: Methodology and product. Can. J. Remote Sens., 31 , 347363.

    • Search Google Scholar
    • Export Citation
  • Latifovic, R., Z-L. Zhu, J. Cihlar, C. Giri, and I. Olthof, 2004: Land cover mapping of North and Central America—Global Land Cover 2000. Remote Sens. Environ., 90 , 116127.

    • Search Google Scholar
    • Export Citation
  • Lewis, P., and M. Disney, 2007: Spectral invariants and scattering across multiple scales from within-leaf to canopy. Remote Sens. Environ., 109 , 196206.

    • Search Google Scholar
    • Export Citation
  • Li, X., and A. H. Strahler, 1992: Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: Effect of crown shape and mutual shadowing. IEEE Trans. Geosci. Remote Sens., 30 , 276292.

    • Search Google Scholar
    • Export Citation
  • Li, Z., M. Cribb, and A. P. Trishchenko, 2002: Impact of surface inhomogeneity on solar radiative transfer under overcast conditions. J. Geophys. Res., 107 .4294, doi:10.1029/2001JD000976.

    • Search Google Scholar
    • Export Citation
  • Liang, S., 2003: A direct algorithm for estimating land surface broadband albedos from MODIS imagery. IEEE Trans. Geosci. Remote Sens., 41 , 136145.

    • Search Google Scholar
    • Export Citation
  • Liou, K-N., 2002: An Introduction to Atmospheric Radiation. 2nd ed. R. Dmowska, J. R. Holton, and H. T. Rossby, Eds., International Geophysics Series, Vol. 84, Academic Press, 583 pp.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., and A. P. Trishchenko, 2005: Comparison of atmospheric correction results for AVHRR, VGT, and MODIS reflective bands used for land applications. Eos, Trans. Amer. Geophys. Union, 86 (Suppl.), Abstract A23A-0929. [Available online at http://www.agu.org/meetings/fm05/fm05-sessions/fm05_A23A.html.].

    • Search Google Scholar
    • Export Citation
  • Luo, Y., A. P. Trishchenko, R. Latifovic, and Z. Li, 2004: Albedo/BRDF retrievals from VEGETATION 10-day composite data over the ARM SGP area. Proc. Second Int. SPOT/VEGETATION Users Conf., Antwerp, Belgium, Joint Research Center of the European Commission, 77–82.

  • Luo, Y., A. P. Trishchenko, R. Latifovic, and Z. Li, 2005: Surface bidirectional reflectance and albedo properties derived using a land cover–based approach with Moderate Resolution Imaging Spectroradiometer observations. J. Geophys. Res., 110 .D01106, doi:10.1029/2004JD004741.

    • Search Google Scholar
    • Export Citation
  • Lyapustin, A., 1999: Atmospheric and geometrical effects on land surface albedo. J. Geophys. Res., 104 , 41274144.

  • Morcrette, J-J., 2002: Assessment of the ECMWF model cloudiness and surface radiation fields at the ARM SGP site. Mon. Wea. Rev., 130 , 257277.

    • Search Google Scholar
    • Export Citation
  • Nicodemus, F. E., 1970: Reflectance nomenclature and directional reflectance and emissivity. Appl. Opt., 9 , 14741475.

  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992: Numerical Recipes in FORTRAN: The Art of Scientific Computing. 2nd ed. Cambridge University Press, 963 pp.

    • Search Google Scholar
    • Export Citation
  • Rahman, H., and G. Dedieu, 1994: SMAC: A simplified method for the atmospheric correction of satellite measurements in the solar spectrum. Int. J. Remote Sens., 15 , 123143.

    • Search Google Scholar
    • Export Citation
  • Rao, C. R. N., and J. Chen, 1996: Post-launch calibration of visible and near-infrared channels of the Advanced Very High Resolution Radiometer on the NOAA-14 spacecraft. Int. J. Remote Sens., 17 , 27432747.

    • Search Google Scholar
    • Export Citation
  • Ross, J. K., 1981: The Radiation Regime and Architecture of Plant Stands. Dr. W. Junk Publishers, 392 pp.

  • Roujean, J-L., M. Leroy, and P-Y. Deschanps, 1992: A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data. J. Geophys. Res., 97 , 2045520468.

    • Search Google Scholar
    • Export Citation
  • Rutan, D., and T. P. Charlock, 1997: Spectral reflectance, directional reflectance, and broadband albedo of the earth’s surface. Preprints, Ninth Conf. on Atmospheric Radiation, Long Beach, CA, Amer. Meteor. Soc., 466–470.

  • Salomonson, V. V., W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, 1989: MODIS: Advanced facility instrument for studies of the earth as a system. IEEE Trans. Geosci. Remote Sens., 27 , 145153.

    • Search Google Scholar
    • Export Citation
  • Samain, O., J-L. Roujean, and B. Geiger, 2005: Fusion of AVHRR and VEGETATION data using a Kalman filter for the retrieval of surface BRDF and albedo. Proc. IGARSS ’05, Vol. 2, Seoul, Korea, Geoscience and Remote Sensing Society, 1142–1145.

    • Search Google Scholar
    • Export Citation
  • Samain, O., B. Geiger, and J-L. Roujean, 2006: Spectral normalization and fusion of optical sensors for the retrieval of BRDF and albedo: Application to VEGETATION, MODIS and MERIS data sets. IEEE Trans. Geosci. Remote Sens., 44 , 31663178.

    • Search Google Scholar
    • Export Citation
  • Schaaf, C. B., and Coauthors, 2002: First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ., 83 , 135148.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 1978: Radiation profiles in extended water clouds. I: Theory. J. Atmos. Sci., 35 , 21112122.

  • Strahler, A. H., and Coauthors, 1999: MODIS BRDF/Albedo Product. Algorithm Theoretical Basis Doc. Version 5.0, NASA, 53 pp. [Available online at http://modis.gsfc.nasa.gov/data/atbd/atbd_mod09.pdf.].

  • Strugnell, N., W. Lucht, and C. Schaaf, 2001: A global albedo data set derived from AVHRR data for use in climate simulations. Geophys. Res. Lett., 28 , 191194.

    • Search Google Scholar
    • Export Citation
  • Tahnk, W. R., and J. A. Coakley, 2001a: Improved calibration coefficients for NOAA-14 AVHRR visible and near-infrared channels. Int. J. Remote Sens., 22 , 12691283.

    • Search Google Scholar
    • Export Citation
  • Tahnk, W. R., and J. A. Coakley, 2001b: Updated calibration coefficients for NOAA-14 AVHRR Channels 1 and 2. Int. J. Remote Sens., 22 , 30533057.

    • Search Google Scholar
    • Export Citation
  • Trishchenko, A. P., 2002: Removing unwanted fluctuations in the AVHRR thermal calibration data using robust techniques. J. Atmos. Oceanic Technol., 19 , 19391954.

    • Search Google Scholar
    • Export Citation
  • Trishchenko, A. P., 2006: Solar irradiance and effective brightness temperature for SWIR channels of AVHRR/NOAA and GOES imagers. J. Atmos. Oceanic Technol., 23 , 198210.

    • Search Google Scholar
    • Export Citation
  • Trishchenko, A. P., J. Cihlar, and Z. Li, 2002a: Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution sensors. Remote Sens. Environ., 81 , 118.

    • Search Google Scholar
    • Export Citation
  • Trishchenko, A. P., B. Hwang, and Z. Li, 2002b: Atmospheric correction of satellite signal in solar domain: Impact of improved molecular spectroscopy. Proc. 12th ARM Science Team Meeting, St. Petersburg, FL, Dept. of Energy, Atmospheric Radiation Measurement Program, 7 pp. [Available online at http://www.arm.gov/publications/proceedings/conf12/extended_abs/trishchenko-ap.pdf.].

  • Trishchenko, A. P., Y. Luo, R. Latifovic, and Z. Li, 2004: Land cover type distribution over the ARM SGP area for atmospheric radiation and environmental research. Proc. 14th ARM Science Team Meeting, Albuquerque, NM, Dept. of Energy, Atmospheric Radiation Measurement Program, 11 pp. [Available online at http://www.arm.gov/publications/proceedings/conf14/extended_abs/trishchenko3-ap.pdf.].

    • Search Google Scholar
    • Export Citation
  • Trishchenko, A. P., K. V. Khlopenkov, C. Ungureanu, R. Latifovic, Y. Luo, and W. B. Park, 2007: Mapping of surface albedo over Mackenzie River basin area from satellite observations. Atmospheric Dynamics of a Cold Region: The Mackenzie GEWEX Study Experience, Vol. 1, M. Woo, Ed., Springer, 327–341.

    • Search Google Scholar
    • Export Citation
  • Wang, S., A. P. Trishchenko, K. V. Khlopenkov, and A. Davidson, 2006: Comparison of International Panel on Climate Change Fourth Assessment Report climate model simulations of surface albedo with satellite products over northern latitudes. J. Geophys. Res., 111 .D21108, doi:10.1029/2005JD006728.

    • Search Google Scholar
    • Export Citation
  • Wang, S., A. P. Trishchenko, and X. Sun, 2007: Simulation of canopy radiation transfer and surface albedo in the EALCO model. Climate Dyn., 29 , 615632.

    • Search Google Scholar
    • Export Citation
  • Wanner, W., X. Li, and A. H. Strahler, 1995: On the derivation of kernel-driven models of bidirectional reflectance. J. Geophys. Res., 100 , 2107721090.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System Experiment. Bull. Amer. Meteor. Soc., 77 , 853868.

    • Search Google Scholar
    • Export Citation
  • Xiong, X., and W. Barnes, 2006: An overview of MODIS radiometric calibration and characterization. Adv. Atmos. Sci., 23 , 6979.

  • Xiong, X., J-Q. Sun, J. A. Esposito, B. Guenther, and W. L. Barnes, 2002: MODIS reflective solar bands calibration algorithm and on-orbit performance. Optical Remote Sensing of the Atmosphere and Clouds III, H.-L. Huang, D. Lu, and Y. Sasano, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 4891), 95–104.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109 .D19105, doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 406 146 3
PDF Downloads 262 56 5