• Alapaty, K., , D. S. Niyogi, , and M. Alapaty, 2001a: An inverse technique for assimilating/adjusting soil moisture in MM5. Proc. 11th PSU/NCAR Mesoscale Modeling System Users’ Workshop, Boulder, CO, National Center for Atmospheric Research, 4 pp. [Available online at http://www.mmm.ucar.edu/mm5/workshop/ws01/alapaty2.pdf.].

    • Search Google Scholar
    • Export Citation
  • Alapaty, K., , N. L. Seaman, , D. S. Niyogi, , and A. F. Hanna, 2001b: Assimilating surface data to improve the accuracy of atmospheric boundary layer simulations. J. Appl. Meteor., 40 , 20682082.

    • Search Google Scholar
    • Export Citation
  • Anthes, R., 1974: Data assimilation and initialization of hurricane prediction models. J. Atmos. Sci., 31 , 702718.

  • Bhat, G. S., , and S. Ameenulla, 2000: Surface meteorological instrumentation for BOBMEX. Proc. Indian Acad. Sci. (Earth Planet. Sci.), 109 , 221228.

    • Search Google Scholar
    • Export Citation
  • Bouttier, F., , J-F. Mahfouf, , and J. Noilhan, 1993: Sequential assimilation of soil moisture from atmospheric low-level parameters Part I: Sensitivity and calibration studies. J. Appl. Meteor., 32 , 13351351.

    • Search Google Scholar
    • Export Citation
  • Buckley, R. L., , A. H. Weber, , and J. H. Weber, 2004: Statistical comparison of Regional Atmospheric Modelling System forecasts with observations. Meteor. Appl., 11 , 6782.

    • Search Google Scholar
    • Export Citation
  • Chen, F., , and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129 , 569585.

    • Search Google Scholar
    • Export Citation
  • Childs, P. P., , A. L. Qureshi, , S. Raman, , K. Alapaty, , R. Ellis, , R. Boyles, , and D. S. Niyogi, 2006: Simulation of convective initiation during IHOP_2002 using the Flux-Adjusting Surface Data Assimilation System (FASDAS). Mon. Wea. Rev., 134 , 134148.

    • Search Google Scholar
    • Export Citation
  • Cox, R., , B. L. Bauer, , and T. Smith, 1998: A mesoscale model intercomparison. Bull. Amer. Meteor. Soc., 79 , 265283.

  • Das Gupta, M., , S. Basu, , R. K. Paliwal, , U. C. Mohanty, , and N. V. Sam, 2003: Assimilation of special observations taken during the INDOEX and its impact on the global analysis-forecast system. Atmósfera, 16 , 103118.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., , and T. T. Warner, 1988: Verification of mesoscale objective analysis of VAS and rawinsonde data using the March 1982 AVE/VAS special network data. Mon. Wea. Rev., 116 , 358367.

    • Search Google Scholar
    • Export Citation
  • Gal-Chen, T., , B. D. Schmidt, , and L. W. Uccellini, 1986: Simulation experiments for testing the assimilation of geostationary satellite temperature retrievals into a numerical prediction model. Mon. Wea. Rev., 114 , 12131230.

    • Search Google Scholar
    • Export Citation
  • Godbole, R. V., 1977: The composite structure of the monsoon depression. Tellus, 29 , 2540.

  • Grell, G. A., , J. Dudhia, , and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). NCAR Tech. Note TN-398+STR, 121 pp.

  • Holt, T., , D. Niyogi, , F. Chen, , K. Manning, , M. A. LeMone, , and A. L. Qureshi, 2006: Effect of land–atmosphere interactions on the IHOP 24–25 May 2002 convection case. Mon. Wea. Rev., 134 , 113133.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation, and Predictability. Cambridge University Press, 341 pp.

  • Kalsi, S. R., 2000: Synoptic weather conditions during the pilot study of Bay of Bengal and Monsoon Experiment (BOBMEX). Proc. Indian Acad. Sci. (Earth Planet. Sci.), 109 , 211220.

    • Search Google Scholar
    • Export Citation
  • Lipton, A. E., , and T. H. Vonder Haar, 1990: Mesoscale analysis by numerical modeling coupled with sounding retrieval from satellites. Mon. Wea. Rev., 118 , 13081329.

    • Search Google Scholar
    • Export Citation
  • Lipton, A. E., , G. D. Modica, , S. T. Heckman, , and A. J. Jackson, 1995: Satellite–model coupled analysis of convective potential in Florida with VAS water vapor and surface temperature data. Mon. Wea. Rev., 123 , 32923304.

    • Search Google Scholar
    • Export Citation
  • Mahfouf, J-F., 1991: Analysis of soil moisture from near-surface parameters: A feasibility study. J. Appl. Meteor., 30 , 15341547.

  • McNider, R. T., , A. J. Song, , D. M. Casey, , P. J. Wetzel, , W. L. Crosson, , and R. M. Rabin, 1994: Toward a dynamic-thermodynamic assimilation of satellite surface temperature in numerical atmospheric models. Mon. Wea. Rev., 122 , 27842803.

    • Search Google Scholar
    • Export Citation
  • Mukhopadhyay, P., , J. Sanjay, , W. R. Cotton, , and S. S. Singh, 2004: Impact of surface meteorological observation on RAMS forecast of monsoon weather systems over the Indian region. Meteor. Atmos. Phys., 90 , 77108.

    • Search Google Scholar
    • Export Citation
  • Njoku, E. G., , T. J. Jackson, , V. Lakshmi, , T. K. Chan, , and S. V. Nghiem, 2003: Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens., 41 , 215229.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., , and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117 , 536549.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., , and A. Xiu, 2003: Development of a land surface model. Part II: Data assimilation. J. Appl. Meteor., 42 , 18111822.

  • Potty, K. V. J., , U. C. Mohanty, , and S. Raman, 2000: Numerical simulation of monsoon depressions over India with a high-resolution nested regional model. Meteor. Appl., 7 , 4560.

    • Search Google Scholar
    • Export Citation
  • Rajan, D., , A. K. Mitra, , S. R. H. Rizvi, , R. K. Paliwal, , A. K. Bohra, , and V. B. Bhatia, 2001: Impact of satellite-derived moisture in a global numerical weather prediction model. Atmósfera, 14 , 203209.

    • Search Google Scholar
    • Export Citation
  • Rajan, D., , B. Simon, , P. C. Joshi, , V. B. Bhatia, , A. K. Mitra, , and R. K. Paliwal, 2002: Impact of NOAA/TOVS derived moisture profile over the ocean on global data assimilation and medium range weather forecasting. Atmósfera, 15 , 223236.

    • Search Google Scholar
    • Export Citation
  • Roy Bhowmik, S. K., 2003: Prediction of monsoon rainfall with a nested grid mesoscale limited area model. Proc. Indian Acad. Sci. (Earth Planet. Sci.), 112 , 499519.

    • Search Google Scholar
    • Export Citation
  • Ruggiero, F. H., , K. D. Sashegyi, , R. V. Madala, , and S. Raman, 1996: The use of surface observations in four-dimensional data assimilation in a mesoscale model. Mon. Wea. Rev., 124 , 10181033.

    • Search Google Scholar
    • Export Citation
  • Ruggiero, F. H., , K. D. Sashegyi, , A. E. Lipton, , R. V. Madala, , and S. Raman, 1999: Coupled assimilation of geostationary satellite sounder data into a mesoscale model using the Bratseth analysis approach. Mon. Wea. Rev., 127 , 802820.

    • Search Google Scholar
    • Export Citation
  • Sandeep, S., , A. Chandrasekar, , and D. Singh, 2006: The impact of assimilation of AMSU data for the prediction of a tropical cyclone over India using a mesoscale model. Int. J. Remote Sens., 27 , 46214653.

    • Search Google Scholar
    • Export Citation
  • Sikka, D. R., , and P. Sanjeeva Rao, 2000: Bay of Bengal Monsoon Experiment (BOBMEX)—A component of the Indian Climate Research Programme (ICRP). Proc. Indian Acad. Sci. (Earth Planet. Sci.), 109 , 207209.

    • Search Google Scholar
    • Export Citation
  • Simon, B., , and P. S. Desai, 1986: Equatorial Indian Ocean evaporation estimates from operational meteorological satellites and some inferences in the context of monsoon onset and activity. Bound.-Layer Meteor., 37 , 3752.

    • Search Google Scholar
    • Export Citation
  • Singh, R., , and P. K. Pal, 2003: Impact of QuikSCAT derived wind fields on a mesoscale non-hydrostatic model. Mausam, 54 , 183188.

  • Stauffer, D. R., , and N. L. Seaman, 1990: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synoptic-scale data. Mon. Wea. Rev., 118 , 12501277.

    • Search Google Scholar
    • Export Citation
  • Stauffer, D. R., , and N. L. Seaman, 1994: Multiscale four-dimensional data assimilation. J. Appl. Meteor., 33 , 416434.

  • Stauffer, D. R., , N. L. Seaman, , and F. S. Binkowski, 1991: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part II: Effects of data assimilation within the planetary boundary layer. Mon. Wea. Rev., 119 , 734754.

    • Search Google Scholar
    • Export Citation
  • Vaidya, S. S., , P. Mukhopadhyay, , D. K. Trivedi, , J. Sanjay, , and S. S. Singh, 2003: Prediction of tropical system over Indian region using a mesoscale model. Meteor. Atmos. Phys., 86 , 6372.

    • Search Google Scholar
    • Export Citation
  • Xavier, V. F., , A. Chandrasekar, , R. Singh, , and B. Simon, 2006: The impact of assimilation of MODIS data for the prediction of a tropical low-pressure system over India using a mesoscale model. Int. J. Remote Sens., 20 , 46554676.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 30 30 3
PDF Downloads 21 21 2

The Impacts of Indirect Soil Moisture Assimilation and Direct Surface Temperature and Humidity Assimilation on a Mesoscale Model Simulation of an Indian Monsoon Depression

View More View Less
  • 1 Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur, India
  • | 2 Division of Atmospheric Sciences, National Science Foundation, Arlington, Virginia
  • | 3 Department of Agronomy, and Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana
© Get Permissions
Restricted access

Abstract

This study investigates the impact of the Flux-Adjusting Surface Data Assimilation System (FASDAS) and the four-dimensional data assimilation (FDDA) using analysis nudging on the simulation of a monsoon depression that formed over India during the 1999 Bay of Bengal Monsoon Experiment (BOBMEX) field campaign. FASDAS allows for the indirect assimilation/adjustment of soil moisture and soil temperature together with continuous direct surface data assimilation of surface temperature and surface humidity. Two additional numerical experiments [control (CTRL) and FDDA] were conducted to assess the relative improvements to the simulation by FASDAS. To improve the initial analysis for the FDDA and the surface data assimilation (SDA) runs, the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) simulation utilized the humidity and temperature profiles from the NOAA Television Infrared Observation Satellite (TIROS) Operational Vertical Sounder (TOVS), surface winds from the Quick Scatterometer (QuikSCAT), and the conventional meteorological upper-air (radiosonde/rawinsonde, pilot balloon) and surface data. The results from the three simulations are compared with each other as well as with NCEP–NCAR reanalysis, the Tropical Rainfall Measuring Mission (TRMM), and the special buoy, ship, and radiosonde observations available during BOBMEX. As compared with the CTRL, the FASDAS and the FDDA runs resulted in (i) a relatively better-developed cyclonic circulation and (ii) a larger spatial area as well as increased rainfall amounts over the coastal regions after landfall. The FASDAS run showed a consistently improved model simulation performance in terms of reduced rms errors of surface humidity and surface temperature as compared with the CTRL and the FDDA runs.

* Current affiliation: Office of Biological and Environmental Research, Office of Science, U.S. Department of Energy, Germantown, Maryland

Corresponding author address: A. Chandrasekar, Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India. Email: chand@phy.iitkgp.ernet.in

This article included in the Impacts of Land Use and Land Cover Change on the Atmosphere special collection.

Abstract

This study investigates the impact of the Flux-Adjusting Surface Data Assimilation System (FASDAS) and the four-dimensional data assimilation (FDDA) using analysis nudging on the simulation of a monsoon depression that formed over India during the 1999 Bay of Bengal Monsoon Experiment (BOBMEX) field campaign. FASDAS allows for the indirect assimilation/adjustment of soil moisture and soil temperature together with continuous direct surface data assimilation of surface temperature and surface humidity. Two additional numerical experiments [control (CTRL) and FDDA] were conducted to assess the relative improvements to the simulation by FASDAS. To improve the initial analysis for the FDDA and the surface data assimilation (SDA) runs, the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) simulation utilized the humidity and temperature profiles from the NOAA Television Infrared Observation Satellite (TIROS) Operational Vertical Sounder (TOVS), surface winds from the Quick Scatterometer (QuikSCAT), and the conventional meteorological upper-air (radiosonde/rawinsonde, pilot balloon) and surface data. The results from the three simulations are compared with each other as well as with NCEP–NCAR reanalysis, the Tropical Rainfall Measuring Mission (TRMM), and the special buoy, ship, and radiosonde observations available during BOBMEX. As compared with the CTRL, the FASDAS and the FDDA runs resulted in (i) a relatively better-developed cyclonic circulation and (ii) a larger spatial area as well as increased rainfall amounts over the coastal regions after landfall. The FASDAS run showed a consistently improved model simulation performance in terms of reduced rms errors of surface humidity and surface temperature as compared with the CTRL and the FDDA runs.

* Current affiliation: Office of Biological and Environmental Research, Office of Science, U.S. Department of Energy, Germantown, Maryland

Corresponding author address: A. Chandrasekar, Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India. Email: chand@phy.iitkgp.ernet.in

This article included in the Impacts of Land Use and Land Cover Change on the Atmosphere special collection.

Save