• Argence, S., , D. Lambert, , E. Richard, , N. Söhne, , J-P. Chaboureau, , F. Crépin, , and P. Arbogast, 2006: High resolution numerical study of the Algiers 2001 flash flood: Sensitivity to the upper-level potential vorticity anomaly. Adv. Geosci., 7 , 251257.

    • Search Google Scholar
    • Export Citation
  • Baran, A. J., , and P. N. Francis, 2004: On the radiative properties of cirrus cloud at solar and thermal wavelengths: A test of model consistency using high-resolution airborne radiance measurements. Quart. J. Roy. Meteor. Soc., 130 , 763778.

    • Search Google Scholar
    • Export Citation
  • Bauer, P., 2001: Over-ocean rainfall retrieval from multisensor data of the Tropical Rainfall Measuring Mission. Part I: Design and evaluation of inversion databases. J. Atmos. Oceanic Technol., 18 , 13151330.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., , E. Bazile, , F. Guichard, , P. J. Mascart, , and E. Richard, 2001: A mass-flux convection scheme for regional and global models. Quart. J. Roy. Meteor. Soc., 127 , 869886.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., , A. Thoss, , A. Dybbroe, , and D. B. Michelson, 2002: Precipitation analysis using the Advanced Microwave Sounding Unit in support of nowcasting applications. Meteor. Appl., 9 , 177189.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., , R. S. Dixon, , C. Gaffard, , and C-G. Wang, 2001: Wind-profiler measurements in the storm of 30 October 2000. Weather, 56 , 367373.

    • Search Google Scholar
    • Export Citation
  • Caniaux, G., , J-L. Redelsperger, , and J-P. Lafore, 1994: A numerical study of the stratiform region of a fast-moving squall line. Part I: General description and water and heat budgets. J. Atmos. Sci., 51 , 20462074.

    • Search Google Scholar
    • Export Citation
  • Chaboureau, J-P., , and P. Bechtold, 2005: Statistical representation of clouds in a regional model and the impact on the diurnal cycle of convection during Tropical Convection, Cirrus and Nitrogen Oxides (TROCCINOX). J. Geophys. Res., 110 .D17103, doi:10.1029/2004JD005645.

    • Search Google Scholar
    • Export Citation
  • Chaboureau, J-P., , and J-P. Pinty, 2006: Validation of a cirrus parameterization with Meteosat Second Generation observations. Geophys. Res. Lett., 33 .L03815, doi:10.1029/2005GL024725.

    • Search Google Scholar
    • Export Citation
  • Chaboureau, J-P., , J-P. Cammas, , P. J. Mascart, , J-P. Pinty, , C. Claud, , R. Roca, , and J-J. Morcrette, 2000: Evaluation of a cloud system life-cycle simulated by Meso-NH during FASTEX using METEOSAT radiances and TOVS-3I cloud retrievals. Quart. J. Roy. Meteor. Soc., 126 , 17351750.

    • Search Google Scholar
    • Export Citation
  • Chaboureau, J-P., , J-P. Cammas, , P. J. Mascart, , J-P. Pinty, , and J-P. Lafore, 2002: Mesoscale model cloud scheme assessment using satellite observations. J. Geophys. Res., 107 .4301, doi:10.1029/2001JD000714.

    • Search Google Scholar
    • Export Citation
  • Chaboureau, J-P., , J-P. Cammas, , J. Duron, , P. J. Mascart, , N. M. Sitnikov, , and H-J. Voessing, 2007a: A numerical study of tropical cross-tropopause transport by convective overshoots. Atmos. Chem. Phys., 7 , 17311740.

    • Search Google Scholar
    • Export Citation
  • Chaboureau, J-P., , P. Tulet, , and C. Mari, 2007b: Diurnal cycle of dust and cirrus over West Africa as seen from Meteosat Second Generation satellite and a regional forecast model. Geophys. Res. Lett., 34 .L02822, doi:10.1029/2006GL027771.

    • Search Google Scholar
    • Export Citation
  • Chevallier, F., , P. Bauer, , G. Kelly, , C. Jakob, , and T. McNally, 2001: Model clouds over oceans as seen from space: Comparison with HIRS/2 and MSU radiances. J. Climate, 14 , 42164229.

    • Search Google Scholar
    • Export Citation
  • Conner, M. D., , and G. W. Petty, 1998: Validation and intercomparison of SSM/I rain-rate retrieval methods over the continental United States. J. Appl. Meteor., 37 , 679700.

    • Search Google Scholar
    • Export Citation
  • Cuxart, J., , P. Bougeault, , and J-L. Redelsperger, 2000: A turbulence scheme allowing for mesoscale and large-eddy simulations. Quart. J. Roy. Meteor. Soc., 126 , 130.

    • Search Google Scholar
    • Export Citation
  • Defer, E., , C. Prigent, , F. Aires, , J-R. Pardo, , C. J. Walden, , O-Z. Zanifé, , J-P. Chaboureau, , and J-P. Pinty, 2008: Development of precipitation retrievals at millimeter and sub-millimeter wavelengths for geostationary satellites. J. Geophys. Res., 113 .D08111, doi:10.1029/2007JD008673.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., , and G. F. Marks, 1995: The development of SSM/I rain-rate retrieval algorithms using ground-based radar measurements. J. Atmos. Oceanic Technol., 12 , 755770.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., , F. Weng, , N. C. Grody, , and L. Zhao, 2000: Precipitation characteristics over land from the NOAA-15 AMSU sensor. Geophys. Res. Lett., 27 , 26692672.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., , J-J. Morcrette, , C. Jakob, , A. C. M. Beljaars, , and T. Stockdale, 2000: Revision of convection, radiation and cloud schemes in the ECMWF Integrated Forecasting System. Quart. J. Roy. Meteor. Soc., 126 , 16851710.

    • Search Google Scholar
    • Export Citation
  • Grody, N. C., 1991: Classification of snow cover and precipitation using the special sensor microwave imager. J. Geophys. Res., 96 , 74237435.

    • Search Google Scholar
    • Export Citation
  • Guillou, C., , S. J. English, , C. Prigent, , and D. C. Jones, 1996: Passive microwave airborne measurements of the sea surface response at 89 and 157 GHz. J. Geophys. Res., 101 , 37753788.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40 , 18011820.

    • Search Google Scholar
    • Export Citation
  • Lafore, J-P., and Coauthors, 1998: The Meso-NH Atmospheric Simulation System. Part I: Adiabatic formulation and control simulations. Ann. Geophys., 16 , 90109.

    • Search Google Scholar
    • Export Citation
  • Lin, Y-L., , R. D. Farley, , and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22 , 10651092.

    • Search Google Scholar
    • Export Citation
  • Liu, G., 2004: Approximation of single scattering properties of ice and snow particles for high microwave frequencies. J. Atmos. Sci., 61 , 24412456.

    • Search Google Scholar
    • Export Citation
  • Liu, G., , and J. A. Curry, 1996: Large-scale cloud features during January 1993 in the North Atlantic Ocean as determined from SSM/I and SSM/T2 observations. J. Geophys. Res., 101 , 70197032.

    • Search Google Scholar
    • Export Citation
  • Masson, V., , J-L. Champeaux, , F. Chauvin, , C. Meriguet, , and R. Lacaze, 2003: A global database of land surface parameters at 1-km resolution in meteorological and climate models. J. Climate, 16 , 12611282.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., , S. Iacobellis, , and R. C. J. Somerville, 2003: SCM simulations of tropical ice clouds using observationally based parameterizations of microphysics. J. Climate, 16 , 16431664.

    • Search Google Scholar
    • Export Citation
  • Mech, M., , S. Crewell, , I. Meirold-Mautner, , C. Prigent, , and J-P. Chaboureau, 2007: Information content of millimeter-wave observations for hydrometeor properties in mid-latitudes. IEEE Trans. Geosci. Remote Sens., 45 , 22872299.

    • Search Google Scholar
    • Export Citation
  • Medaglia, C. M., and Coauthors, 2005: Comparing microphysical/dynamical outputs by different cloud resolving models: Impact on passive microwave precipitation retrieval from satellite. Adv. Geosci., 2 , 195199.

    • Search Google Scholar
    • Export Citation
  • Meirold-Mautner, I., , C. Prigent, , E. Defer, , J. R. Pardo, , J-P. Chaboureau, , J-P. Pinty, , M. Mech, , and S. Crewell, 2007: Radiative transfer simulations using mesoscale cloud model outputs: Comparisons with passive microwave and infrared satellite observations for midlatitudes. J. Atmos. Sci., 64 , 15501568.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., 1991: Light scattering by randomly oriented axially symmetric particles. J. Opt. Soc. Amer., 8 , 871882.

  • Morcrette, J-J., 1991: Evaluation of model-generated cloudiness: Satellite-observed and model-generated diurnal variability of brightness temperature. Mon. Wea. Rev., 119 , 12051224.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., , and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117 , 536549.

    • Search Google Scholar
    • Export Citation
  • Olson, W. S., and Coauthors, 2006: Precipitation and latent heating distributions from satellite passive microwave radiometry. Part I: Improved method and uncertainties. J. Appl. Meteor. Climatol., 45 , 702720.

    • Search Google Scholar
    • Export Citation
  • Panegrossi, G., and Coauthors, 1998: Use of cloud model microphysics for passive microwave-based precipitation retrieval: Significance of consistency between model and measurement manifolds. J. Atmos. Sci., 55 , 16441673.

    • Search Google Scholar
    • Export Citation
  • Pardo, J. R., , J. Cernicharo, , and E. Serabyn, 2001: Atmospheric transmission at microwaves (ATM): An improved model for millimeter/submillimeter applications. IEEE Trans. Antennas Propag., 49 , 16831694.

    • Search Google Scholar
    • Export Citation
  • Pinty, J-P., , and P. Jabouille, 1998: A mixed-phase cloud parameterization for use in a mesoscale non-hydrostatic model: Simulations of a squall line and of orographic precipitations. Preprints, Conf. on Cloud Physics, Everett, WA, Amer. Meteor. Soc., 217–220.

  • Prigent, C., , W. B. Rossow, , and E. Matthews, 1997: Microwave land surface emissivities estimated from SSM/I observations. J. Geophys. Res., 102 , 2186721890.

    • Search Google Scholar
    • Export Citation
  • Prigent, C., , J. R. Pardo, , M. I. Mishchenko, , and W. B. Rossow, 2001: Microwave polarized signatures generated within cloud systems: Special Sensor Microwave Imager (SSM/I) observations interpreted with radiative transfer simulations. J. Geophys. Res., 106 , 2824328258.

    • Search Google Scholar
    • Export Citation
  • Prigent, C., , F. Chevallier, , F. Karbou, , P. Bauer, , and G. Kelly, 2005: AMSU-A land surface emissivity estimation for numerical weather prediction assimilation schemes. J. Appl. Meteor., 44 , 416426.

    • Search Google Scholar
    • Export Citation
  • Prigent, C., , F. Aires, , and W. B. Rossow, 2006: Land surface microwave emissivities over the globe for a decade. Bull. Amer. Meteor. Soc., 87 , 15731584.

    • Search Google Scholar
    • Export Citation
  • Richard, E., , A. Buzzi, , and G. Zängl, 2007: Quantitative precipitation forecasting in the Alps: The advances achieved by the Mesoscale Alpine Programme. Quart. J. Roy. Meteor. Soc., 133 , 831846.

    • Search Google Scholar
    • Export Citation
  • Roberts, N., 2005: An investigation of the ability of a storm-scale configuration of the Met Office NWP model to predict flood-producing rainfall. Met Office Forecasting Research Division Tech. Rep. 455, 80 pp.

  • Saunders, R., , P. Brunel, , S. English, , P. Bauer, , U. O’Keeffe, , P. Francis, , and P. Rayer, 2005: RTTOV-8 science and validation report. NWP SAF Rep., 41 pp.

  • Spencer, R. W., , H. M. Goodman, , and R. E. Hood, 1989: Precipitation retrieval over land and ocean with SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6 , 254273.

    • Search Google Scholar
    • Export Citation
  • Stein, J., , E. Richard, , J-P. Lafore, , J-P. Pinty, , N. Asencio, , and S. Cosma, 2000: High-resolution non-hydrostatic simulations of flash-flood episodes with grid-nesting and ice-phase parameterization. Meteor. Atmos. Phys., 72 , 203221.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., , C. M. Medaglia, , S. Dietrich, , A. Mugnai, , G. Panegrossi, , S. Pinori, , and E. A. Smith, 2005: The 9–10 November 2001 Algerian flood: A numerical study. Bull. Amer. Meteor. Soc., 86 , 12291235.

    • Search Google Scholar
    • Export Citation
  • Wiedner, M., , C. Prigent, , J. R. Pardo, , O. Nuissier, , J-P. Chaboureau, , J-P. Pinty, , and P. Mascart, 2004: Modeling of passive microwave responses in convective situations using outputs from mesoscale models: Comparison with TRMM/TMI satellite observations. J. Geophys. Res., 109 .D06214, doi:10.1029/2003JD004280.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • Zängl, G., 2004: Numerical simulations of the 12–13 August 2002 flooding event in eastern Germany. Quart. J. Roy. Meteor. Soc., 130 , 19211940.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 20 20 2
PDF Downloads 9 9 0

A Midlatitude Precipitating Cloud Database Validated with Satellite Observations

View More View Less
  • 1 Laboratoire d’Aérologie, University of Toulouse, and CNRS, Toulouse, France
  • | 2 LERMA, Observatoire de Paris, Paris, France
  • | 3 Instituto de Estructura de la Materia, CSIC, Madrid, Spain
  • | 4 Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany
© Get Permissions
Restricted access

Abstract

The simulations of five midlatitude precipitating events by the nonhydrostatic mesoscale model Méso-NH are analyzed. These cases cover contrasted precipitation situations from 30° to 60°N, which are typical of midlatitudes. They include a frontal case with light precipitation over the Rhine River area (10 February 2000), a long-lasting precipitation event at Hoek van Holland, Netherlands (19 September 2001), a moderate rain case over the Elbe (12 August 2002), an intense rain case over Algiers (10 November 2001), and the “millennium storm” in the United Kingdom (30 October 2000). The physically consistent hydrometeor and thermodynamic outputs are used to generate a database for cloud and precipitation retrievals. The hydrometeor vertical profiles that were generated vary mostly with the 0°C isotherm, located between 1 and 3 km in height depending on the case. The characteristics of this midlatitude database are complementary to the GPROF database, which mostly concentrates on tropical situations. The realism of the simulations is evaluated against satellite observations by comparing synthetic brightness temperatures (BTs) with Advanced Microwave Sounding Unit (AMSU), Special Sensor Microwave Imager (SSM/I), and Meteosat observations. The good reproduction of the BT distributions by the model is exploited by calculating categorical scores for verification purposes. The comparison with 3-hourly Meteosat observations demonstrates the ability of the model to forecast the time evolution of the cloud cover, the latter being better predicted for the stratiform cases than for others. The comparison with AMSU-B measurements shows the skill of the model to predict rainfall at the correct location.

Corresponding author address: Dr. Jean-Pierre Chaboureau, Laboratoire d’Aérologie, University of Toulouse/CNRS, Observatoire Midi-Pyrénées, 14 av. Belin, F-31400 Toulouse, France. Email: jean-pierre.chaboureau@aero.obs-mip.fr

Abstract

The simulations of five midlatitude precipitating events by the nonhydrostatic mesoscale model Méso-NH are analyzed. These cases cover contrasted precipitation situations from 30° to 60°N, which are typical of midlatitudes. They include a frontal case with light precipitation over the Rhine River area (10 February 2000), a long-lasting precipitation event at Hoek van Holland, Netherlands (19 September 2001), a moderate rain case over the Elbe (12 August 2002), an intense rain case over Algiers (10 November 2001), and the “millennium storm” in the United Kingdom (30 October 2000). The physically consistent hydrometeor and thermodynamic outputs are used to generate a database for cloud and precipitation retrievals. The hydrometeor vertical profiles that were generated vary mostly with the 0°C isotherm, located between 1 and 3 km in height depending on the case. The characteristics of this midlatitude database are complementary to the GPROF database, which mostly concentrates on tropical situations. The realism of the simulations is evaluated against satellite observations by comparing synthetic brightness temperatures (BTs) with Advanced Microwave Sounding Unit (AMSU), Special Sensor Microwave Imager (SSM/I), and Meteosat observations. The good reproduction of the BT distributions by the model is exploited by calculating categorical scores for verification purposes. The comparison with 3-hourly Meteosat observations demonstrates the ability of the model to forecast the time evolution of the cloud cover, the latter being better predicted for the stratiform cases than for others. The comparison with AMSU-B measurements shows the skill of the model to predict rainfall at the correct location.

Corresponding author address: Dr. Jean-Pierre Chaboureau, Laboratoire d’Aérologie, University of Toulouse/CNRS, Observatoire Midi-Pyrénées, 14 av. Belin, F-31400 Toulouse, France. Email: jean-pierre.chaboureau@aero.obs-mip.fr

Save