• Adler, R. F., and Coauthors, 2003: The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4 , 11471167.

    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., 1977: Hurricane model experiments with a new cumulus parameterization scheme. Mon. Wea. Rev., 105 , 270286.

  • Briegleb, B. P., 1992: Delta–Eddington approximation for solar radiation in the NCAR Community Climate Model. J. Geophys. Res., 97 , 76037612.

    • Search Google Scholar
    • Export Citation
  • Cavalcanti, I. F. A., and Coauthors, 2002: Global climatological features in a simulation using the CPTEC–COLA AGCM. J. Climate, 15 , 29652988.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1995: Absorption of solar radiation by clouds: Observations versus models. Science, 267 , 496499.

  • Chagas, J. C. S., , P. Nobre, , and M. Malagutti, 2004: Modifications on the CPTEC global model radiation scheme. Proc. XIII Brazilian Meteorology Conf., Fortaleza-Ceará, Brazil, Instituto Nacional de Pesquisa Espaciais (INPE), INPE Tech. Doc. INPE-12070-PRE/7416. [Available online at http://urlib.net/cptec.inpe.br/walmeida/2004/09.27.11.05.].

  • Chou, M. D., , and M. J. Suarez, 1999: A solar radiation parameterization (CLIRAD-SW) for atmospheric studies. NASA/TM-1999-104606, M. J. Suarez, Ed., Series on Global Modeling and Data Assimilation, Vol. 15, 40 pp.

  • Clough, S. A., , F. X. Kneizys, , and R. W. Davies, 1989: Line shape and the water vapor continuum. Atmos. Res., 23 , 229241.

  • Clough, S. A., and Coauthors, 2005: Atmospheric radiative transfer modeling: A summary of AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91 , 233244.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., 2006: Unresolved issues in atmospheric solar absorption. Frontiers of Climate Modeling, J. T. Kiehl and V. Ramanathan, Eds., Cambridge University Press, 179–216.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., , J. M. Lee-Taylor, , D. P. Edwards, , and G. L. Francis, 2006: Effects of increased near-infrared absorption by water vapor on the climate system. J. Geophys. Res., 111 .D18109, doi:10.1029/2005JD006796.

    • Search Google Scholar
    • Export Citation
  • Cusack, S., , A. Slingo, , J. M. Edwards, , and M. Wild, 1998: The radiative impact of a simple aerosol climatology on the Hadley Centre atmospheric GCM. Quart. J. Roy. Meteor. Soc., 124 , 25172526.

    • Search Google Scholar
    • Export Citation
  • Davies, R., 1982: Documentation of the solar radiation parameterization in the GLAS climate model. NASA Tech. Memo. 83961, 57 pp. [Available from National Technical Information Service, 5285 Port Royal Rd., Springfield, VA 22161.].

  • Figueroa, S. N., , T. Tarasova, , H. M. J. Barbosa, , J. P. Bonatti, , and P. L. Silvia Dias, 2006: The impact of cumulus and radiation parameterization schemes on Southern Hemisphere summer climate simulated by CPTEC atmospheric general circulation model. Proc. Eighth Int. Conf. on Southern Hemisphere Meteorology and Oceanography, Foz do Iguaçu, Brazil, INPE, 1037–1040.

  • Fomin, B., , and Y. Gershanov, 1996: Short-Wave Results. Vol. II, Tables of the Benchmark Calculations of Atmospheric Fluxes for the ICRCCM Test Cases. Vol. IAE-5990/1, Kurchatov Institute, Moscow, Russia, 42 pp.

  • Fomin, B., , T. Udalova, , and E. Zhitnitskii, 2004: Evolution of spectroscopic information over the last decade and its effect on line-by-line calculations for validation of radiation codes for climate models. J. Quant. Spectrosc. Radiat. Transfer, 86 , 7385.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , K. N. Liou, , and M. C. Cribb, 1997: Multiple scattering parameterization in thermal infrared radiative transfer. J. Atmos. Sci., 54 , 27992812.

    • Search Google Scholar
    • Export Citation
  • Gates, W., 1992: AMIP: The Atmospheric Model Intercomparison Project. Bull. Amer. Meteor. Soc., 73 , 19621970.

  • Gates, W., and Coauthors, 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP). Bull. Amer. Meteor. Soc., 80 , 2955.

    • Search Google Scholar
    • Export Citation
  • Harrison, E. F., , P. Minnis, , B. R. Barkstrom, , V. Ramanathan, , R. D. Cess, , and G. G. Gibson, 1990: Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment. J. Geophys. Res., 95 , 1868718703.

    • Search Google Scholar
    • Export Citation
  • Harshvardhan, and Corsetti, T. G., 1984: Longwave radiation parameterization for the UCLA/GLAS GCM. NASA Tech. Memo. 86072, 65 pp.

  • Harshvardhan, and Randall, D. A., , and T. G. Corsetti, 1987: A fast radiation parameterization for general circulation models. J. Geophys. Res., 92 , 10091016.

    • Search Google Scholar
    • Export Citation
  • Hart, T. L., and Coauthors, 1990: Atmospheric general circulation simulations with the BMRC Global Spectral Model: The impact of revised physical parameterizations. J. Climate, 3 , 436459.

    • Search Google Scholar
    • Export Citation
  • Hou, Y. T., 1990: Cloud–radiation dynamics interaction. Ph.D. thesis, University of Maryland, 209 pp.

  • Hurrell, J. W., , J. J. Hack, , B. A. Boville, , D. L. Willianson, , and J. T. Kiehl, 1998: The dynamical simulation of the NCAR Community Climate Model Version 3 (CCM3). J. Climate, 11 , 12071236.

    • Search Google Scholar
    • Export Citation
  • Johns, T. C., , R. E. Carnell, , J. F. Crossley, , J. M. Gregory, , J. B. Mitchell, , C. A. Senior, , S. B. Tett, , and R. A. Wood, 1997: The second Hadley Centre coupled ocean–atmosphere GCM: Model description, spinup and validation. Climate Dyn., 13 , 103134.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kiehl, J. T., 1994: Clouds and their effects on the climate system. Phys. Today, 47 , 3642.

  • Kiehl, J. T., , J. J. Hack, , M. H. Zhang, , and R. D. Cess, 1995: Sensitivity of a GCM climate to enhanced shortwave cloud absorption. J. Climate, 8 , 22002212.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247267.

    • Search Google Scholar
    • Export Citation
  • Kuo, H. L., 1974: Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci., 31 , 12321240.

    • Search Google Scholar
    • Export Citation
  • Lacis, A. A., , and J. E. Hansen, 1974: A parameterization for the absorption of solar radiation in the earth’s atmosphere. J. Atmos. Sci., 31 , 118133.

    • Search Google Scholar
    • Export Citation
  • Li, Z., , L. Moreau, , and A. Arking, 1997: On solar energy disposition: A perspective from observation and modeling. Bull. Amer. Meteor. Soc., 78 , 5370.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., , and R. Bennartz, 2002: Impact of improved near-infrared water vapor line data in simulations with the ECHAM4 general circulation model. J. Geophys. Res., 107 .4288, doi:10.1029/2001JD001101.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., , and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20 , 851875.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., 1986: An Introduction to the Theory of Climate. D. Reidel, 261 pp.

  • Morcrette, J-J., 1990: Impact of changes to the radiation transfer parameterizations plus cloud optical properties in the ECMWF model. Mon. Wea. Rev., 118 , 847873.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115 , 312.

    • Search Google Scholar
    • Export Citation
  • Pinker, R., , and I. Laszlo, 1992: Modeling surface solar irradiance for satellite applications on a global scale. J. Appl. Meteor., 31 , 194211.

    • Search Google Scholar
    • Export Citation
  • Plana-Fattori, A., , E. P. Souza, , and J. C. S. Chagas, 1997: Absorption of solar radiation by water vapor in the atmosphere. Part I: A comparison between selected parameterizations and reference results. Brazil. J. Geophys., 15 , 275290.

    • Search Google Scholar
    • Export Citation
  • Pope, V. D., , M. L. Gallani, , P. R. Rowntree, , and R. A. Stratton, 2000: The impact of new physical parameterizations in the Hadley Centre climate model: HadCM3. Climate Dyn., 16 , 123146.

    • Search Google Scholar
    • Export Citation
  • Potter, G. L., , and R. D. Cess, 2004: Testing the impact of clouds on the radiation budgets of 19 atmospheric general circulation models. J. Geophys. Res., 109 .D02106, doi:10.1029/2003JD004018.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and Coauthors, 1983: The response of a spectral general circulation model to refinements in radiative processes. J. Atmos. Sci., 40 , 605630.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., , R. D. Cess, , E. F. Harrison, , P. Minnis, , B. R. Barkstrom, , E. Ahmad, , and D. Hartmann, 1989: Cloud–radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science, 243 , 5763.

    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., , and S. M. Freidenreich, 1992: A study of broadband parameterizations of the solar radiative interactions with water vapor and water drops. J. Geophys. Res., 97 , 1148711512.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and Coauthors, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15 , 16091625.

  • Rothman, L. S., and Coauthors, 1983: AFGL trace gas compilation, 1982 version. Appl. Opt., 22 , 16161627.

  • Rothman, L. S., and Coauthors, 1998: The HITRAN molecular database and HAWKS, 1996 edition. J. Quant. Spectrosc. Radiat. Transfer, 60 , 665710.

    • Search Google Scholar
    • Export Citation
  • Rothman, L. S., and Coauthors, 2003: The HITRAN molecular spectroscopic database: Edition of 2000 including 2001 updates. J. Quant. Spectrosc. Radiat. Transfer, 82 , 542.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., 1987: The development of verification of a cloud prediction scheme for the ECMWF model. Quart. J. Roy. Meteor. Soc., 113 , 899927.

    • Search Google Scholar
    • Export Citation
  • Souza, E. P., , P. L. da S. Dias, , A. Plana-Fattori, , and J. C. S. Chagas, 1997: Absorption of solar radiation by water vapor in the atmosphere. Part II: Sensitivity tests with a general circulation model. Brazil. J. Geophys., 15 , 291306.

    • Search Google Scholar
    • Export Citation
  • Tarasova, T., , and B. Fomin, 2000: Solar radiation absorption due to water vapor: Advanced broadband parameterizations. J. Appl. Meteor., 39 , 19471951.

    • Search Google Scholar
    • Export Citation
  • Tarasova, T., , and I. Cavalcanti, 2002: Monthly mean solar radiative fluxes and cloud forcing over South America in the period of 1986–88: GCM results and satellite-derived data. J. Appl. Meteor., 41 , 863871.

    • Search Google Scholar
    • Export Citation
  • Tarasova, T., , H. M. J. Barbosa, , and S. N. Figueroa, 2006: Incorporation of new solar radiation scheme into CPTEC GCM. Tech. Rep. INPE-14052-NTE/371, Instituto Nacional de Pesquisas Espaciais, 53 pp. [Available online at http://urlib.net/sid.inpe.br/iris@1915/2006/01.16.10.40.].

  • Tiedtke, M., 1984: The effect of penetrative cumulus convection on the large-scale flow in a general circulation model. Contrib. Atmos. Phys., 57 , 216239.

    • Search Google Scholar
    • Export Citation
  • Wild, M., 2005: Solar radiation budgets in atmospheric model intercomparisons from a surface perspective. Geophys. Res. Lett., 32 .L07704, doi:10.1029/2005GL022421.

    • Search Google Scholar
    • Export Citation
  • Wild, M., , and A. Ohmura, 1999: The role of clouds and the cloud-free atmosphere in the problem of underestimated absorption of solar radiation in GCM atmospheres. Phys. Chem. Earth, 24B , 261268.

    • Search Google Scholar
    • Export Citation
  • Wild, M., , A. Ohmura, , H. Gilgen, , and E. Roeckner, 1995: Validation of general circulation model radiative fluxes using surface observations. J. Climate, 8 , 13091324.

    • Search Google Scholar
    • Export Citation
  • Wild, M., and Coauthors, 2006: Evaluation of clear-sky solar fluxes in GCMs participating in AMIP and IPCC-AR4 from a surface perspective. J. Geophys. Res., 111 .D01104, doi:10.1029/2005JD006118.

    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 1986: World Climate Research Programme: A preliminary cloudless standard atmosphere for radiation computation. WMO Tech. Doc. WCP-112, WMO/TD-24, 53 pp.

  • Xue, Y., , P. J. Sellers, , J. L. Kinter III, , and J. Shukla, 1991: A simplified biosphere model for global climate studies. J. Climate, 4 , 345364.

    • Search Google Scholar
    • Export Citation
  • Yamamoto, G., 1962: Direct absorption of solar radiation by atmospheric water vapor, carbon dioxide and molecular oxygen. J. Atmos. Sci., 19 , 182188.

    • Search Google Scholar
    • Export Citation
  • Yu, H., and Coauthors, 2006: A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmos. Chem. Phys., 6 , 613666.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10 10 4
PDF Downloads 5 5 4

Impacts of a New Solar Radiation Parameterization on the CPTEC AGCM Climatological Features

View More View Less
  • 1 Centro de Previsão de Tempo e Estudos Climáticos, Cachoeira Paulista, São Paulo, Brazil
© Get Permissions
Restricted access

Abstract

The impacts of improved atmospheric absorption on radiative fluxes, atmospheric circulation, and hydrological cycle for long-term GCM integrations are investigated. For these runs the operational version of the Centro de Previsão de Tempo e Estudos Climáticos (CPTEC) AGCM and its enhanced version with a new solar radiation scheme are used. There is an 8% increase in the annual mean global average atmospheric absorption in the enhanced integration as compared with the operational model integration. The extra absorption is due to gases (0.5%), the water vapor continuum (1.5%), and background aerosols (6%), which were not considered in the operational solar radiation scheme. Under clear-sky conditions the enhanced model atmospheric absorption is in agreement with observations to within ±3 W m−2, while for all-sky conditions the remaining errors are related to unaccounted-for cloud absorption. There is a general warm-up of the atmosphere in the enhanced model with temperatures increasing up to ∼3 K in the troposphere and ∼5–8 K in the stratosphere, bringing the model closer to the reference values. The intensities of the tropospheric jets are reduced by 7%–8%, while that of the polar night stratospheric jet is increased by 5%–10%, reducing the model systematic error. The reduced availability of latent energy for the saturated convective processes weakens the meridional circulation and slows down the hydrological cycle. The model overestimation of December–February precipitation over the South Pacific convergence zone (SPCZ) and the South Atlantic convergence zone (SACZ) is reduced by 0.5–1.0 mm day−1, and that over the Northern Hemisphere storm-tracks region is reduced by 0.5 mm day−1. On a monthly time scale, the changes in the precipitation distribution over the SACZ are found to be much larger, ±2–3 mm day−1.

* Additional affiliation: Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, Russia

Corresponding author address: Dr. Henrique Barbosa, Centro de Previsão de Tempo e Estudos Climáticos, Rodovia Presidente Dutra, Km. 40, 12630-000, Cachoeira Paulista, SP, Brazil. Email: hbarbosa@cptec.inpe.br

Abstract

The impacts of improved atmospheric absorption on radiative fluxes, atmospheric circulation, and hydrological cycle for long-term GCM integrations are investigated. For these runs the operational version of the Centro de Previsão de Tempo e Estudos Climáticos (CPTEC) AGCM and its enhanced version with a new solar radiation scheme are used. There is an 8% increase in the annual mean global average atmospheric absorption in the enhanced integration as compared with the operational model integration. The extra absorption is due to gases (0.5%), the water vapor continuum (1.5%), and background aerosols (6%), which were not considered in the operational solar radiation scheme. Under clear-sky conditions the enhanced model atmospheric absorption is in agreement with observations to within ±3 W m−2, while for all-sky conditions the remaining errors are related to unaccounted-for cloud absorption. There is a general warm-up of the atmosphere in the enhanced model with temperatures increasing up to ∼3 K in the troposphere and ∼5–8 K in the stratosphere, bringing the model closer to the reference values. The intensities of the tropospheric jets are reduced by 7%–8%, while that of the polar night stratospheric jet is increased by 5%–10%, reducing the model systematic error. The reduced availability of latent energy for the saturated convective processes weakens the meridional circulation and slows down the hydrological cycle. The model overestimation of December–February precipitation over the South Pacific convergence zone (SPCZ) and the South Atlantic convergence zone (SACZ) is reduced by 0.5–1.0 mm day−1, and that over the Northern Hemisphere storm-tracks region is reduced by 0.5 mm day−1. On a monthly time scale, the changes in the precipitation distribution over the SACZ are found to be much larger, ±2–3 mm day−1.

* Additional affiliation: Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, Russia

Corresponding author address: Dr. Henrique Barbosa, Centro de Previsão de Tempo e Estudos Climáticos, Rodovia Presidente Dutra, Km. 40, 12630-000, Cachoeira Paulista, SP, Brazil. Email: hbarbosa@cptec.inpe.br

Save