• Anderson, B. T., , J. O. Roads, , S-C. Chen, , and H-M. H. Juang, 2001: Model dynamics of summertime low-level jets over northwestern Mexico. J. Geophys. Res., 106 , 34013413.

    • Search Google Scholar
    • Export Citation
  • Anderson, C. J., , and R. W. Arritt, 2001: Representation of summertime low-level jets in the central United States by the NCEP–NCAR reanalysis. J. Climate, 14 , 234247.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., , K. J. Claffey, , and A. P. Makshtas, 1995: Low-level atmospheric jets over the western Weddell Sea. Preprints. Fourth Symp. on Polar Meteorology and Oceanography, Dallas, TX, Amer. Meteor. Soc., 252–257.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., , K. J. Claffey, , and A. P. Makshtas, 2000: Low-level atmospheric jets and inversions over the western Weddell Sea. Bound.-Layer Meteor., 97 , 459486.

    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., 1980: Boundary layers in numerical weather prediction. Workshop on the Planetary Boundary Layer, J. C. Wyngaard, Ed., Amer. Meteor. Soc., 247–279.

    • Search Google Scholar
    • Export Citation
  • Arritt, R. W., , T. D. Rink, , M. Segal, , D. P. Todey, , C. A. Clark, , M. J. Mitchell, , and K. M. Labas, 1997: The Great Plains low-level jet during the warm season of 1993. Mon. Wea. Rev., 125 , 21762192.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., , R. K. Newsom, , J. K. Lundquist, , Y. L. Pichugina, , R. L. Coulter, , and L. Mahrt, 2002: Nocturnal low-level jet characteristics over Kansas during CASES-99. Bound.-Layer Meteor., 105 , 221252.

    • Search Google Scholar
    • Export Citation
  • Bergstrom, H., , and A-S. Smedman, 1995: Stably stratified flow in a marine atmospheric surface layer. Bound.-Layer Meteor., 72 , 239265.

    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., , C. Leck, , and E. D. Nilsson, 2001: Sudden changes in aerosol and gas concentrations in the central Arctic marine boundary layer: Causes and consequences. J. Geophys. Res., 106 , 3216732185.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38 , 283290.

    • Search Google Scholar
    • Export Citation
  • Brook, R. R., 1985: Koorin nocturnal low-level jet. Bound.-Layer Meteor., 32 , 133154.

  • Corsmeier, U., , N. Kalthoff, , O. Kolle, , M. Kotzian, , and F. Fiedler, 1997: Ozone concentration jump in the stable nocturnal boundary layer during a LLJ-event. Atmos. Environ., 31 , 19771989.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., , and T. T. Warner, 1993: A three-dimensional numerical investigation of a Carolina coastal low-level jet during GALE IOP 2. Mon. Wea. Rev., 121 , 10301047.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1993: Is the Coriolis force really responsible for the inertial oscillation? Bull. Amer. Meteor. Soc., 74 , 21792184.

  • Fleagle, R. G., , and J. A. Businger, 1980: An Introduction to Atmospheric Physics. 2nd ed. Academic Press, 432 pp.

  • Frisch, U., 1995: Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press, 296 pp.

  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Holton, J. R., 1992: An Introduction to Dynamic Meteorology. 3rd ed. Academic Press, 511 pp.

  • Joshi, M. M., , R. M. Haberle, , J. R. Barnes, , J. R. Murphy, , and J. Schaeffer, 1997: Low-level jets in the NASA Ames Mars General Circulation Model. J. Geophys. Res., 102 , 65116523.

    • Search Google Scholar
    • Export Citation
  • Kundu, P. K., 1990: Fluid Mechanics. Academic Press, 628 pp.

  • Leck, C., , E. D. Nilsson, , E. K. Bigg, , and L. Bäcklin, 2001: Atmospheric program on the Arctic Ocean Expedition 1996 (AOE-96): An overview of scientific goals, experimental approach, and instruments. J. Geophys. Res., 106 , 3205132067.

    • Search Google Scholar
    • Export Citation
  • Lettau, H., , and B. Davidson, 1957: Site Description and Data Evaluation. Vol. II, Exploring the Atmosphere’s First Mile, Pergamon Press, 578 pp.

    • Search Google Scholar
    • Export Citation
  • Liu, A. K., , and D. O. ReVelle, 1992: Mesoscale spatial variability of nocturnal low-level jet winds. Preprints, Fifth Conf. on Mesoscale Meteorology, Atlanta, GA, Amer. Meteor. Soc., 307–312.

  • Malcher, J., , and H. Kraus, 1983: Low-level jet phenomena described by an integrated dynamic PBL model. Bound.-Layer Meteor., 27 , 327343.

    • Search Google Scholar
    • Export Citation
  • Miles, J., 1986: Richardson’s criterion for the stability of stratified shear flow. Phys. Fluids, 29 , 34703471.

  • Nilsson, E. D., 1996: Planetary boundary layer structure and air mass transport during the International Arctic Ocean Expedition 1991. Tellus, 48B , 178196.

    • Search Google Scholar
    • Export Citation
  • Nilsson, E. D., , and E. K. Bigg, 1996: Influences on formation and dissipation of high arctic fogs during summer and autumn and their interaction with aerosol. Tellus, 48B , 234253.

    • Search Google Scholar
    • Export Citation
  • Nilsson, E. D., , and S. Barr, 2001: Effects of synoptic patterns on atmospheric chemistry and aerosols during the Arctic Ocean Expedition 1996. J. Geophys. Res., 106 , 3206932086.

    • Search Google Scholar
    • Export Citation
  • Nilsson, E. D., , and Ü Rannik, 2001: Turbulent aerosol fluxes over the Arctic Ocean. 1. Dry deposition over sea and pack ice. J. Geophys. Res., 106 , 3212532137.

    • Search Google Scholar
    • Export Citation
  • Nilsson, E. D., , Ü Rannik, , and M. Håkansson, 1997: Surface energy budget over the central Arctic Ocean in summer. Preprints, 12th Symp. on Boundary Layers and Turbulence, Vancouver, BC, Canada, Amer. Meteor. Soc., 156–157.

  • Nilsson, E. D., , Ü Rannik, , and M. Håkansson, 2001: Surface energy budget over the central Arctic Ocean during late summer and early freeze-up. J. Geophys. Res., 106 , 3218732205.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., 2000: Forcing of the summertime low-level jet along the California coast. J. Appl. Meteor., 39 , 24212433.

  • Persson, A., 1998: How do we understand the Coriolis force? Bull. Amer. Meteor. Soc., 79 , 13731385.

  • Phillips, N. A., 2000: An explication of the Coriolis effect. Bull. Amer. Meteor. Soc., 81 .299–303.

  • Pomeroy, K. R., , and T. R. Parish, 2001: A case study of the interaction of the summertime coastal jet with the California topography. Mon. Wea. Rev., 129 , 530539.

    • Search Google Scholar
    • Export Citation
  • Poulos, G. S., and Coauthors, 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc., 83 , 555581.

    • Search Google Scholar
    • Export Citation
  • Ray, P. S., 1986: Mesoscale Meteorology and Forecasting. Amer. Meteor. Soc., 793 pp.

  • ReVelle, D. O., 1993: Chaos and “bursting” in the planetary boundary layer. J. Appl. Meteor., 32 , 11691180.

  • ReVelle, D. O., 1997: On predicting the transition to turbulence in stably stratified fluids. Preprints, 12th Symp. on Boundary Layers and Turbulence, Vancouver, BC, Canada, Amer. Meteor. Soc., 150–151.

  • ReVelle, D. O., , and A. K. Liu, 1992: Some effects of synoptic-scale baroclinicity on nocturnal PBL jets. Preprints, Fifth Conf. on Mesoscale Meteorology, Atlanta, GA, Amer. Meteor. Soc., 313–318.

  • ReVelle, D. O., , J. A. Logsdon, , and A. K. Liu, 1990: The low-level nocturnal jet phenomena: A diagnostic sensitivity study of the primary and secondary factors affecting its development and evolution. Preprints, Fourth Conf. on Mesoscale Meteorology, Boulder, CO, Amer. Meteor. Soc., 228–229.

  • ReVelle, D. O., , E. D. Nilsson, , and M. Kulmala, 1997: Modeling of the Arctic boundary layer: Comparisons with measurements from the Arctic Ocean Expedition 1996. Preprints, 12th Symp. on Boundary Layers and Turbulence, Vancouver, BC, Canada, Amer. Meteor. Soc., 148–149.

  • Ripa, P., 1997: “Inertial” oscillations and the β-plane approximation(s). J. Phys. Oceanogr., 27 , 633647.

  • Savijärvi, H., , and T. Siili, 1993: The Martian slope winds and the nocturnal PBL jet. J. Atmos. Sci., 50 , 7788.

  • Smedman, A-S., , M. Tjernström, , and U. Högström, 1993: Analysis of the turbulence structure of a marine low-level jet. Bound.-Layer Meteor., 66 , 105126.

    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 1989: Structure of the Atmospheric Boundary Layer. Prentice Hall, 317 pp.

  • Starr, V. P., 1968: Physics of Negative Viscosity Phenomena. McGraw-Hill, 256 pp.

  • Steeneveld, G. J., , B. J. H. van de Wiel, , and A. A. M. Holtslag, 2006: Modeling the evolution of the atmospheric boundary layer coupled to the land surface for three contrasting nights in CASES-99. J. Atmos. Sci., 63 , 920935.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Thorpe, A. J., , and T. H. Guymer, 1977: The nocturnal jet. Quart. J. Roy. Meteor. Soc., 103 , 633653.

  • Van de Wiel, B. J. H., , R. J. Ronda, , A. F. Moene, , H. A. R. De Bruin, , and A. A. M. Holtslag, 2002a: Intermittent turbulence and oscillations in the stable boundary layer over land. Part I: A bulk model. J. Atmos. Sci., 59 , 942958.

    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., , A. F. Moene, , R. J. Ronda, , H. A. R. De Bruin, , and A. A. M. Holtslag, 2002b: Intermittent turbulence and oscillations in the stable boundary layer over land. Part II: A system dynamics approach. J. Atmos. Sci., 59 , 25672581.

    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., , A. F. Moene, , O. K. Hartogensis, , H. A. R. De Bruin, , and A. A. M. Holtslag, 2003: Intermittent turbulence in the stable boundary layer over land. Part III: A classification for observations during CASES-99. J. Atmos. Sci., 60 , 25092522.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6 6 2
PDF Downloads 5 5 2

Summertime Low-Level Jets over the High-Latitude Arctic Ocean

View More View Less
  • 1 Earth and Environmental Sciences Division, Atmospheric, Climate and Environmental Dynamics Group, Los Alamos National Laboratory, Los Alamos, New Mexico
  • 2 Atmospheric Science Unit, Department of Applied Environmental Science, Stockholm University, Stockholm, Sweden
© Get Permissions
Restricted access

Abstract

The application of a simple analytic boundary layer model developed by Thorpe and Guymer did not produce good agreement with observational data for oceanic low-level jet observations even though this model has worked well for the predictions of low-level jets over continental surfaces. This failure to properly predict the boundary layer wind maxima was very puzzling because more detailed numerical boundary layer models have properly predicted these low-level oceanic wind maxima. To understand the reasons for its failure to explain the ocean observations, the authors modified the frictional terms in the horizontal linear momentum equations of Thorpe and Guymer, using a standard eddy viscosity closure technique instead of the Rayleigh friction parameterization originally used. This improvement in the modeling of the dissipation terms, which has resulted in the use of an enhanced Rayleigh friction parameterization in the horizontal momentum equations, modified the boundary layer winds such that the continental predictions remained nearly identical to those predicted previously using the Thorpe and Guymer model while the oceanic predictions have now become more representative of the measured wind speed from recent Arctic expeditions.

Corresponding author address: Douglas O. ReVelle, P.O. Box 1663, MS D401, EES-2, Los Alamos National Laboratory, Los Alamos, NM 87545. Email: revelle@lanl.gov

Abstract

The application of a simple analytic boundary layer model developed by Thorpe and Guymer did not produce good agreement with observational data for oceanic low-level jet observations even though this model has worked well for the predictions of low-level jets over continental surfaces. This failure to properly predict the boundary layer wind maxima was very puzzling because more detailed numerical boundary layer models have properly predicted these low-level oceanic wind maxima. To understand the reasons for its failure to explain the ocean observations, the authors modified the frictional terms in the horizontal linear momentum equations of Thorpe and Guymer, using a standard eddy viscosity closure technique instead of the Rayleigh friction parameterization originally used. This improvement in the modeling of the dissipation terms, which has resulted in the use of an enhanced Rayleigh friction parameterization in the horizontal momentum equations, modified the boundary layer winds such that the continental predictions remained nearly identical to those predicted previously using the Thorpe and Guymer model while the oceanic predictions have now become more representative of the measured wind speed from recent Arctic expeditions.

Corresponding author address: Douglas O. ReVelle, P.O. Box 1663, MS D401, EES-2, Los Alamos National Laboratory, Los Alamos, NM 87545. Email: revelle@lanl.gov

Save