Toward a Fully Parametric Retrieval of the Nonraining Parameters over the Global Oceans

Gregory S. Elsaesser Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Gregory S. Elsaesser in
Current site
Google Scholar
PubMed
Close
and
Christian D. Kummerow Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Christian D. Kummerow in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In light of the upcoming launch of the Global Precipitation Measurement (GPM) mission, a parametric retrieval algorithm of the nonraining parameters over the global oceans is developed with the ability to accommodate all currently existing and planned spaceborne microwave window channel sensors and imagers. The physical retrieval is developed using all available sensor channels in a full optimal estimation inversion. This framework requires that retrieved parameters be physically consistent with all observed satellite radiances regardless of the sensor being used. The retrieval algorithm has been successfully applied to the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E), the Special Sensor Microwave Imager (SSM/I), and the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) with geophysical parameter retrieval results comparable to independent studies using sensor-optimized algorithms. The optimal estimation diagnostics characterize the retrieval further, providing errors associated with each of the retrieved parameters, indicating whether the retrieved state is physically consistent with observed radiances, and yielding information on how well simulated radiances agree with observed radiances. This allows for the quantitative assessment of potential calibration issues in either the model or sensor. In addition, there is an expected, consistent response of these diagnostics based on the scene being observed, such as in the case of a raining scene, allowing for the emergence of a rainfall detection scheme providing a new capability in rainfall identification for use in passive microwave rainfall and cloud property retrievals.

Corresponding author address: Gregory Elsaesser, Dept. of Atmospheric Science, Colorado State University, Fort Collins, CO 80523-1371. Email: elsaesser@atmos.colostate.edu

Abstract

In light of the upcoming launch of the Global Precipitation Measurement (GPM) mission, a parametric retrieval algorithm of the nonraining parameters over the global oceans is developed with the ability to accommodate all currently existing and planned spaceborne microwave window channel sensors and imagers. The physical retrieval is developed using all available sensor channels in a full optimal estimation inversion. This framework requires that retrieved parameters be physically consistent with all observed satellite radiances regardless of the sensor being used. The retrieval algorithm has been successfully applied to the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E), the Special Sensor Microwave Imager (SSM/I), and the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) with geophysical parameter retrieval results comparable to independent studies using sensor-optimized algorithms. The optimal estimation diagnostics characterize the retrieval further, providing errors associated with each of the retrieved parameters, indicating whether the retrieved state is physically consistent with observed radiances, and yielding information on how well simulated radiances agree with observed radiances. This allows for the quantitative assessment of potential calibration issues in either the model or sensor. In addition, there is an expected, consistent response of these diagnostics based on the scene being observed, such as in the case of a raining scene, allowing for the emergence of a rainfall detection scheme providing a new capability in rainfall identification for use in passive microwave rainfall and cloud property retrievals.

Corresponding author address: Gregory Elsaesser, Dept. of Atmospheric Science, Colorado State University, Fort Collins, CO 80523-1371. Email: elsaesser@atmos.colostate.edu

Save
  • Alishouse, J. C., S. A. Snyder, J. Vongsathorn, and R. R. Ferraro, 1990: Determination of oceanic total precipitable water from the SSM/I. IEEE Trans. Geosci. Remote Sens., 28 , 811–816.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., 2007: Global assessment of marine boundary layer cloud droplet number concentration from satellite. J. Geophys. Res., 112 .D02201, doi:10.1029/2006JD007547.

    • Search Google Scholar
    • Export Citation
  • Berg, W., T. L’Ecuyer, and C. Kummerow, 2006: Rainfall climate regimes: The relationship of regional TRMM rainfall biases to the environment. J. Appl. Meteor., 45 , 434–454.

    • Search Google Scholar
    • Export Citation
  • Brown, S. T., and C. S. Ruf, 2005: Determination of an Amazon hot reference target for the on-orbit calibration of microwave radiometers. J. Atmos. Oceanic Technol., 22 , 1340–1352.

    • Search Google Scholar
    • Export Citation
  • Chang, P. S., and L. Li, 1998: Ocean surface wind speed and direction retrievals from the SSM/I. IEEE Trans. Geosci. Remote Sens., 36 , 1866–1871.

    • Search Google Scholar
    • Export Citation
  • Colton, M. C., and G. A. Poe, 1999: Intersensor calibration of DMSP SSM/I’s: F-8 to F-14, 1987–1997. IEEE Trans. Geosci. Remote Sens., 37 , 418–439.

    • Search Google Scholar
    • Export Citation
  • Connor, L. N., and P. S. Chang, 2000: Ocean surface wind retrievals using the TRMM Microwave Imager. IEEE Trans. Geosci. Remote Sens., 38 , 2009–2016.

    • Search Google Scholar
    • Export Citation
  • Deblonde, G., and S. J. English, 2001: Evaluation of the FASTEM-2 fast microwave ocean surface emissivity model. Tech. Proc. Int. TOVS Study Conf. XI, Budapest, Hungary, WMO, 67–78.

  • Durre, I., R. S. Vose, and D. B. Wuertz, 2006: Overview of the Integrated Global Radiosonde Archive. J. Climate, 19 , 53–67.

  • Ferraro, R. R., E. A. Smith, W. Berg, and G. J. Huffman, 1998: A screening methodology for passive microwave precipitation retrieval algorithms. J. Atmos. Sci., 55 , 1583–1600.

    • Search Google Scholar
    • Export Citation
  • Foster, J., M. Bevis, and W. Raymond, 2006: Precipitable water and the lognormal distribution. J. Geophys. Res., 111 .D15102, doi:10.1029/2005JD006731.

    • Search Google Scholar
    • Export Citation
  • Goodberlet, M. A., and C. T. Swift, 1992: Improved retrieval from the DMSP wind speed algorithm under adverse weather conditions. IEEE Trans. Geosci. Remote Sens., 30 , 1076–1077.

    • Search Google Scholar
    • Export Citation
  • Greenwald, T. J., G. L. Stephens, S. A. Christopher, and T. H. Vonder Haar, 1995: Observations of the global characteristics and regional radiative effects of marine cloud liquid water. J. Climate, 8 , 2928–2946.

    • Search Google Scholar
    • Export Citation
  • Hollinger, J. P., R. Lo, and G. Poe, 1987: Special Sensor Microwave/Imager user’s guide. NRL Tech. Rep. 579269, 120 pp. [Available from Naval Research Laboratory, Washington, DC 20375-5337.].

  • Hollinger, J. P., J. L. Peirce, and G. A. Poe, 1990: SSM/I instrument evaluation. IEEE Trans. Geosci. Remote Sens., 28 , 781–790.

  • Horvath, A., and R. Davies, 2007: Comparison of microwave and optical cloud water path estimates from TMI, MODIS, and MISR. J. Geophys. Res., 112 .D01202, doi:10.1029/2006JD007101.

    • Search Google Scholar
    • Export Citation
  • Huang, H-L., and G. R. Diak, 1992: Retrieval of nonprecipitating liquid water cloud parameters from microwave data: A simulation study. J. Atmos. Oceanic Technol., 9 , 354–363.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39 , 2038–2052.

    • Search Google Scholar
    • Export Citation
  • Isaacs, R. G., and G. Deblonde, 1987: Millimeter wave moisture sounding: The effect of clouds. Radio Sci., 22 , 367–377.

  • Jackson, D. L., and G. L. Stephens, 1995: A study of SSM/I-derived columnar water vapor over the global oceans. J. Climate, 8 , 2025–2038.

    • Search Google Scholar
    • Export Citation
  • Karstens, U., C. Simmer, and E. Ruprecht, 1994: Remote sensing of cloud liquid water. Meteor. Atmos. Phys., 54 , 157–171.

  • Kawanishi, T., and Coauthors, 2003: The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E): NASDA’s contribution to the EOS for Global Energy and Water Cycle Studies. IEEE Trans. Geosci. Remote Sens., 41 , 184–194.

    • Search Google Scholar
    • Export Citation
  • King, M. D., S-C. Tsay, S. E. Platnick, M. Wang, and K-N. Liou, 1997: Cloud retrieval algorithms for MODIS: Optical thickness, effective particle radius, and thermodynamic phase. MODIS Algorithm Theoretical Basis Doc. ATBD-MOD-05, Version 5, NASA Goddard Space Flight Center, Greenbelt, MD, 79 pp. [Available online at http://modis-atmos.gsfc.nasa.gov/_docs/atbd_mod05.pdf.].

  • Kohn, D. J., 1995: Refinement of a semi-empirical model for the microwave emissivity of the sea surface as a function of wind speed. M.S. thesis, Dept. of Meteorology, Texas A&M University, 44 pp.

  • Kummerow, C., W. S. Olson, and L. Giglio, 1996: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote Sens., 34 , 1213–1232.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15 , 809–817.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40 , 1801–1820.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Berg, J. Thomas-Stahle, and H. Masunaga, 2006: Quantifying global uncertainties in a simple microwave rainfall algorithm. J. Atmos. Oceanic Technol., 23 , 23–37.

    • Search Google Scholar
    • Export Citation
  • Liebe, H. J., G. A. Hufford, and T. Manabe, 1991: A model for the complex permittivity of water at frequencies below 1 THz. Int. J. Infrared Millimeter Waves, 12 , 659–675.

    • Search Google Scholar
    • Export Citation
  • Liebe, H. J., G. A. Hufford, and M. G. Cotton, 1993: Propagation modeling of moist air and suspended water particles at frequencies below 1000 GHz. Advisory Group for Aerospace Research and Development Conf. Proc: Atmospheric Propagation Effects through Natural and Man-Made Obscurants for Visible to MM-Wave Radiation (AGARD-CP-542), AGARD, Neuilly sur Seine, France, 3-1–3-10.

    • Search Google Scholar
    • Export Citation
  • Liljegren, J. C., S. A. Boukabara, K. Cady-Pereira, and S. A. Clough, 2005: The effect of the half-width of the 22-GHz water vapor line on retrievals of temperature and water vapor profiles with a 12-channel microwave radiometer. IEEE Trans. Geosci. Remote Sens., 43 , 1102–1108.

    • Search Google Scholar
    • Export Citation
  • Lin, B., and W. A. Rossow, 1994: Observations of cloud liquid water path over oceans: Optical and microwave remote sensing methods. J. Geophys. Res., 99 , 20907–20927.

    • Search Google Scholar
    • Export Citation
  • Liu, G., and J. A. Curry, 1993: Determination of characteristic features of cloud liquid water from satellite microwave measurements. J. Geophys. Res., 98 , 5069–5092.

    • Search Google Scholar
    • Export Citation
  • Marks, C. J., and C. D. Rodgers, 1993: A retrieval method for atmospheric composition from limb emission measurements. J. Geophys. Res., 98 , 14939–14953.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., and C. Kummerow, 2005: Combined radar and radiometer analysis of precipitation profiles for a parametric retrieval algorithm. J. Atmos. Oceanic Technol., 22 , 909–929.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 1998: The Tropical Ocean Global Atmosphere (TOGA) observing system. J. Geophys. Res., 103 , C7. 14169–14240.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., 2006a: The probability distribution of sea surface wind speeds. Part I: Theory and SeaWinds observations. J. Climate, 19 , 497–520.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., 2006b: The probability distribution of sea surface wind speeds. Part II: Dataset intercomparison and seasonal variability. J. Climate, 19 , 521–534.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47 , 1878–1893.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. King, S. Ackerman, W. Menzel, B. Baum, J. Riedi, and R. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41 , 459–473.

    • Search Google Scholar
    • Export Citation
  • Prigent, C., L. Phalippou, and S. English, 1997: Variational inversion of the SSM/I observations during the ASTEX campaign. J. Appl. Meteor., 36 , 493–508.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7 , 929–948.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15 , 1609–1625.

    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 1976: Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation. Rev. Geophys. Space Phys., 4 , 609–624.

    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 1990: Characterization and error analysis of profiles retrieved from remote sounding measurements. J. Geophys. Res., 95 , 5587–5595.

    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 2000: Inverse Methods For Atmospheric Sounding: Theory and Practice. World Scientific, 238 pp.

  • Rosenkranz, P. W., 1998: Water vapor microwave continuum absorption: A comparison of measurements and models. Radio Sci., 33 , 919–928.

    • Search Google Scholar
    • Export Citation
  • Ruf, C. S., 2000: Detection of calibration drifts in spaceborne microwave radiometers using a vicarious cold reference. IEEE Trans. Geosci. Remote Sens., 38 , 44–52.

    • Search Google Scholar
    • Export Citation
  • Shin, D-B., and C. Kummerow, 2003: Parametric rainfall retrieval algorithms for passive microwave radiometers. J. Appl. Meteor., 42 , 1480–1496.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131 , 2961–3012.

  • Wilheit, T. T., 1979a: A model for the microwave emissivity of the ocean’s surface as a function of wind speed. IEEE Trans. Geosci. Electron., 17 , 244–249.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T. T., 1979b: The effect of wind on the microwave emission from the ocean’s surface at 37 GHz. J. Geophys. Res., 84 , 4921–4926.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1782 1539 32
PDF Downloads 245 53 9