• Cooper, K. A., , M. R. Hjelmfelt, , R. G. Derickson, , D. A. R. Kristovich, , and N. F. Laird, 2000: Numerical simulation of transitions in boundary layer convective structures in a lake-effect snow event. Mon. Wea. Rev., 128 , 32833295.

    • Search Google Scholar
    • Export Citation
  • Draine, B. T., , and P. J. Flatau, 1994: Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Amer., 11A , 1491.

  • Evans, K. F., , J. R. Wang, , P. E. Racette, , G. Heymsfield, , and L. Li, 2005: Ice cloud retrievals and analysis with the compact scanning submillimeter imaging radiometer and the cloud radar system during CRYSTAL FACE. J. Appl. Meteor., 44 , 839859.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2006: Data Assimilation: The Ensemble Kalman Filter. Springer, 280 pp.

  • Field, P. R., , and A. J. Heymsfield, 2003: Aggregation and scaling of ice crystal size distributions. J. Atmos. Sci., 60 , 544560.

  • Filippov, A. V., , M. Zurita, , and D. E. Rosner, 2000: Fractal-like aggregates: Relation between morphology and physical properties. J. Colloid Interface Sci., 229 , 261273.

    • Search Google Scholar
    • Export Citation
  • Gelb, A., 1974: Applied Optimal Estimation. MIT Press, 374 pp.

  • Gill, P. E., , W. Murray, , and M. H. Wright, 1981: Practical Optimization. Academic, 401 pp.

  • Grecu, M., , and E. N. Anagnostou, 2002: Use of passive microwave observations in a radar rainfall-profiling algorithm. J. Appl. Meteor., 41 , 702715.

    • Search Google Scholar
    • Export Citation
  • Grecu, M., , and W. S. Olson, 2006: Bayesian estimation of precipitation from satellite passive microwave observations using combined radar–radiometer retrievals. J. Appl. Meteor. Climatol., 45 , 416433.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , and C. M. R. Platt, 1984: A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content. J. Atmos. Sci., 41 , 846855.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , A. Bansemer, , P. R. Field, , S. L. Durden, , J. L. Stith, , J. E. Dye, , W. Hall, , and C. A. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59 , 34573491.

    • Search Google Scholar
    • Export Citation
  • Hitschfeld, W., , and J. Bordan, 1954: Errors inherent in the radar measurement of rainfall at attenuating wavelengths. J. Meteor., 11 , 5867.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., , and R. Meneghini, 1994: Intercomparison of single-frequency methods for retrieving a vertical rain profile from airborne or spaceborne radar data. J. Atmos. Oceanic Technol., 11 , 15071516.

    • Search Google Scholar
    • Export Citation
  • Kim, M-J., 2006: Single scattering parameters of randomly oriented snow particles at microwave frequencies. J. Geophys. Res., 111 .D14201, doi:10.1029/2005JD006892.

    • Search Google Scholar
    • Export Citation
  • Kristovich, D. A. R., 1993: Mean circulations of boundary-layer rolls in lake-effect snow storms. Bound.-Layer Meteor., 63 , 293315.

  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40 , 18011820.

    • Search Google Scholar
    • Export Citation
  • Lin, Y-L., , R. D. Farley, , and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22 , 10651092.

    • Search Google Scholar
    • Export Citation
  • Lobl, E. S., , K. Aonashi, , B. Griffith, , C. Kummerow, , G. Liu, , M. Murakami, , and T. Wilheit, 2007: Wakasa Bay: An AMSR precipitation validation campaign. Bull. Amer. Meteor. Soc., 88 , 551558.

    • Search Google Scholar
    • Export Citation
  • Magono, C., , and T. Nakamura, 1965: Aerodynamic studies of falling precipitation particles. J. Meteor. Soc. Japan, 43 , 139147.

  • Maruyama, K., , and Y. Fujiyoshi, 2005: Monte Carlo simulation of the formation of snowflakes. J. Atmos. Sci., 62 , 15291544.

  • Marzano, F. S., , A. Mugnai, , G. Panegrossi, , N. Pierdicca, , E. A. Smith, , and J. Turk, 1999: Bayesian estimation of precipitating cloud parameters from combined measurements of spaceborne microwave radiometer and radar. IEEE Trans. Geosci. Remote Sens., 37 , 596613.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., , T. Iguchi, , T. Kozu, , L. Liao, , K. Okamoto, , J. A. Jones, , and J. Kwiatkowski, 2000: Use of the surface reference technique for path attenuation estimates from the TRMM precipitation radar. J. Appl. Meteor., 39 , 20532070.

    • Search Google Scholar
    • Export Citation
  • Noh, Y-J., , G. Liu, , E-K. Seo, , J. R. Wang, , and K. Aonashi, 2006: Development of a snowfall retrieval algorithm at high microwave frequencies. J. Geophys. Res., 111 .D22216, doi:10.1029/2005JD006826.

    • Search Google Scholar
    • Export Citation
  • North, G. R., 1984: Empirical orthogonal functions and normal modes. J. Atmos. Sci., 41 , 879887.

  • Olson, W. S., , P. Bauer, , C. D. Kummerow, , Y. Hong, , and W-K. Tao, 2001: A melting-layer model for passive/active microwave remote sensing applications. Part II: Simulation of TRMM observations. J. Appl. Meteor., 40 , 11641179.

    • Search Google Scholar
    • Export Citation
  • Seo, E-K., , and G. Liu, 2005: Retrievals of cloud ice water path by combining ground cloud radar and satellite high-frequency microwave measurements near the ARM SGP site. J. Geophys. Res., 110 .D14203, doi:10.1029/2004JD005727.

    • Search Google Scholar
    • Export Citation
  • Shin, D-B., , and C. Kummerow, 2003: Parametric rainfall retrieval algorithms for passive microwave radiometers. J. Appl. Meteor., 42 , 14801496.

    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G. M., , J. R. Wang, , G. M. Heymsfield, , R. Hood, , W. Manning, , R. Meneghini, , and J. A. Weinman, 2003: Combined radiometer–radar microphysical profile estimations with emphasis on high-frequency brightness temperature observations. J. Appl. Meteor., 42 , 476487.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., , and J. Simpson, 1993: Goddard cumulus ensemble model. Part I: Model description. Terr. Atmos. Oceanic Sci., 4 , 3572.

  • Testud, J., , S. Oury, , R. A. Black, , P. Amayenc, , and X. Dou, 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40 , 11181140.

    • Search Google Scholar
    • Export Citation
  • Weinman, J. A., , and M-J. Kim, 2007: A simple model of the millimeter-wave scattering parameters of randomly oriented aggregates of finite cylindrical ice hydrometeors. J. Atmos. Sci., 64 , 634644.

    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., , R. C. Ball, , P. R. Field, , and A. J. Heymsfield, 2004: Universality in snowflake aggregation. Geophys. Res. Lett., 31 .L15104, doi:10.1029/2004GL020363.

    • Search Google Scholar
    • Export Citation
  • Xu, Y-L., , and BÅS. Gustafson, 2001: A generalized multiparticle Mie-solution: Further experimental verification. J. Quant. Spectrosc. Radiat. Transfer, 70 , 395419.

    • Search Google Scholar
    • Export Citation
  • Xue, M., , K. K. Droegemeier, , and V. Wong, 2000: The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75 , 161193.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8 8 3
PDF Downloads 1 1 0

Precipitating Snow Retrievals from Combined Airborne Cloud Radar and Millimeter-Wave Radiometer Observations

View More View Less
  • 1 Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore County, Baltimore, and NASA Goddard Space Flight Center, Greenbelt, Maryland
  • 2 Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, and NASA Goddard Space Flight Center, Greenbelt, Maryland
© Get Permissions
Restricted access

Abstract

An algorithm for retrieving snow over oceans from combined cloud radar and millimeter-wave radiometer observations is developed. The algorithm involves the use of physical models to simulate cloud radar and millimeter-wave radiometer observations from basic atmospheric variables such as hydrometeor content, temperature, and relative humidity profiles and is based on an optimal estimation technique to retrieve these variables from actual observations. A high-resolution simulation of a lake-effect snowstorm by a cloud-resolving model is used to test the algorithm. That is, synthetic observations are generated from the output of the cloud numerical model, and the retrieval algorithm is applied to the synthetic data. The algorithm performance is assessed by comparing the retrievals with the reference variables used in synthesizing the observations. The synthetic observation experiment indicates good performance of the retrieval algorithm. The algorithm is also applied to real observations from the Wakasa Bay field experiment that took place over the Sea of Japan in January and February 2003. The application of the retrieval algorithm to data from the field experiment yields snow estimates that are consistent with both the cloud radar and radiometer observations.

Corresponding author address: Dr. Mircea Grecu, NASA Goddard Space Flight Center, Code 613.1, Greenbelt, MD 20771. Email: grecu@agnes.gsfc.nasa.gov

Abstract

An algorithm for retrieving snow over oceans from combined cloud radar and millimeter-wave radiometer observations is developed. The algorithm involves the use of physical models to simulate cloud radar and millimeter-wave radiometer observations from basic atmospheric variables such as hydrometeor content, temperature, and relative humidity profiles and is based on an optimal estimation technique to retrieve these variables from actual observations. A high-resolution simulation of a lake-effect snowstorm by a cloud-resolving model is used to test the algorithm. That is, synthetic observations are generated from the output of the cloud numerical model, and the retrieval algorithm is applied to the synthetic data. The algorithm performance is assessed by comparing the retrievals with the reference variables used in synthesizing the observations. The synthetic observation experiment indicates good performance of the retrieval algorithm. The algorithm is also applied to real observations from the Wakasa Bay field experiment that took place over the Sea of Japan in January and February 2003. The application of the retrieval algorithm to data from the field experiment yields snow estimates that are consistent with both the cloud radar and radiometer observations.

Corresponding author address: Dr. Mircea Grecu, NASA Goddard Space Flight Center, Code 613.1, Greenbelt, MD 20771. Email: grecu@agnes.gsfc.nasa.gov

Save