Process-Oriented Analysis of Environmental Conditions Associated with Precipitation Fog Events in the New York City Region

Robert Tardif Research Applications Laboratory, National Center for Atmospheric Research, and Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado

Search for other papers by Robert Tardif in
Current site
Google Scholar
PubMed
Close
and
Roy M. Rasmussen Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Roy M. Rasmussen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An analysis of the environmental conditions associated with precipitation fog events is presented using 20 yr of historical observations taken in a region centered on New York, New York. The objective is to determine the preferred weather scenarios and identify physical processes influencing the formation of fog during precipitation. Salient synoptic-scale features are identified using NCEP–NCAR reanalyses. Local environmental parameters, such as wind speed and direction, temperature, and humidity, are analyzed using surface observations, while the vertical structure of the lower atmosphere is examined using available rawinsonde data. The analysis reveals that precipitation fog mostly occurs as a result of the gradual lowering of cloud bases as continuous light rain or light drizzle is observed. Such scenarios occur under various synoptic weather patterns in areas characterized by large-scale uplift, differential temperature advection, and positive moisture advection. Precipitation fog onset typically occurs with winds from the northeast at inland locations and onshore flow at coastal locations, with flows from the south to southwest aloft. A majority of the cases showed the presence of a sharp low-level temperature inversion resulting from differential temperature advection or through the interaction of warm air flowing over a cold surface in onshore flow conditions. This suggests a common scenario of fog formation under moistening conditions resulting from precipitation evaporating into colder air near the surface. A smaller number of events formed with cooling of the near-saturated or saturated air. Evidence is also presented of the possible role of shear-induced turbulent mixing in the production of supersaturation and fog formation during precipitation.

Corresponding author address: Robert Tardif, National Center for Atmospheric Research, Box 3000, Boulder, CO 80301. Email: mtl_robbie@hotmail.com

Abstract

An analysis of the environmental conditions associated with precipitation fog events is presented using 20 yr of historical observations taken in a region centered on New York, New York. The objective is to determine the preferred weather scenarios and identify physical processes influencing the formation of fog during precipitation. Salient synoptic-scale features are identified using NCEP–NCAR reanalyses. Local environmental parameters, such as wind speed and direction, temperature, and humidity, are analyzed using surface observations, while the vertical structure of the lower atmosphere is examined using available rawinsonde data. The analysis reveals that precipitation fog mostly occurs as a result of the gradual lowering of cloud bases as continuous light rain or light drizzle is observed. Such scenarios occur under various synoptic weather patterns in areas characterized by large-scale uplift, differential temperature advection, and positive moisture advection. Precipitation fog onset typically occurs with winds from the northeast at inland locations and onshore flow at coastal locations, with flows from the south to southwest aloft. A majority of the cases showed the presence of a sharp low-level temperature inversion resulting from differential temperature advection or through the interaction of warm air flowing over a cold surface in onshore flow conditions. This suggests a common scenario of fog formation under moistening conditions resulting from precipitation evaporating into colder air near the surface. A smaller number of events formed with cooling of the near-saturated or saturated air. Evidence is also presented of the possible role of shear-induced turbulent mixing in the production of supersaturation and fog formation during precipitation.

Corresponding author address: Robert Tardif, National Center for Atmospheric Research, Box 3000, Boulder, CO 80301. Email: mtl_robbie@hotmail.com

Save
  • Armstrong, R. L., and M. J. Brodzik, 2005: Northern Hemisphere EASE-Grid weekly snow cover and sea ice extent version 3. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/nsidc-0046.html.].

  • Bergot, T., and D. Guédalia, 1994: Numerical forecasting of radiation fog. Part I: Numerical model and sensitivity tests. Mon. Wea. Rev., 122 , 12181230.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and P. C. Banacos, 2002: The vertical profile of wind and temperature in cyclones and anticyclones over the eastern two-thirds of the United States: A climatology. Mon. Wea. Rev., 130 , 477506.

    • Search Google Scholar
    • Export Citation
  • Byers, H. R., 1959: General Meteorology. McGraw-Hill, 481 pp.

  • Cho, Y-K., M-O. Kim, and B-C. Kim, 2000: Sea fog around the Korean Peninsula. J. Appl. Meteor., 39 , 24732479.

  • Choularton, T. W., G. Fullarton, J. Latham, C. S. Mill, M. H. Smith, and I. M. Stromberg, 1981: A field study of radiation fog at Meppen, Germany. Quart. J. Roy. Meteor. Soc., 107 , 381394.

    • Search Google Scholar
    • Export Citation
  • Collett Jr., J. L., K. J. Hoag, D. E. Sherman, A. Baton, and L. W. Richards, 1999: Spatial and temporal variations in San Joaquin Valley fog chemistry. Atmos. Environ., 33 , 129140.

    • Search Google Scholar
    • Export Citation
  • Croft, P. J., R. L. Pfost, J. M. Medlin, and G. A. Johnson, 1997: Fog forecasting for the southern region: A conceptual model approach. Wea. Forecasting, 12 , 545556.

    • Search Google Scholar
    • Export Citation
  • Donaldson, N. R., and R. E. Stewart, 1993: Fog induced by mixed-phase precipitation. Atmos. Res., 29 , 925.

  • Durre, I., R. S. Vose, and D. B. Wuertz, 2006: Overview of the Integrated Global Radiosonde Archive. J. Climate, 19 , 5368.

  • Eckhardt, S., A. Stohl, H. Wernli, P. James, C. Forster, and N. Spichtinger, 2004: A 15-year climatology of warm conveyor belts. J. Climate, 17 , 218237.

    • Search Google Scholar
    • Export Citation
  • Findlater, J., W. T. Roach, and B. C. McHugh, 1989: The haar of north-east Scotland. Quart. J. Roy. Meteor. Soc., 115 , 581608.

  • Fitzjarrald, D. R., and G. G. Lala, 1989: Hudson valley fog environments. J. Appl. Meteor., 28 , 13031328.

  • Friedlein, M. T., 2004: Dense fog climatology: Chicago O’Hare International airport, July 1996–April 2002. Bull. Amer. Meteor. Soc., 85 , 515517.

    • Search Google Scholar
    • Export Citation
  • Fujibe, F., 2001: On the near-0°C frequency maximum in surface air temperature under precipitation: A statistical evidence for the melting effect. J. Meteor. Soc. Japan, 79 , 731739.

    • Search Google Scholar
    • Export Citation
  • George, J. J., 1940: Fog: Its causes and forecasting with special reference to eastern and southern United States. Bull. Amer. Meteor. Soc., 21 , 135148. 261269. 285291.

    • Search Google Scholar
    • Export Citation
  • Gerber, H., 1991: Supersaturation and droplet spectral evolution in fog. J. Atmos. Sci., 48 , 25692588.

  • Goldman, L., 1951: On forecasting ceiling lowering during continuous rain. Mon. Wea. Rev., 79 , 133142.

  • Goodman, J., 1977: The microstructure of California coastal fog and stratus. J. Appl. Meteor., 16 , 10561067.

  • Hirsch, M. E., A. T. DeGaetano, and S. J. Colucci, 2001: An East Coast winter storm climatology. J. Climate, 14 , 882899.

  • Hoag, K. J., J. R. Collett, and S. N. Pandis, 1999: The influence of drop size-dependent fog chemistry on aerosol processing by San Joaquin Valley fogs. Atmos. Environ., 33 , 48174832.

    • Search Google Scholar
    • Export Citation
  • Holets, S., and R. N. Swanson, 1981: High-inversion fog episodes in central California. J. Appl. Meteor., 20 , 890899.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Keim, B. D., L. D. Meeker, and J. F. Slater, 2005: Manual synoptic climate classification for the East Coast of New England (USA) with an application to PM2.5 concentration. Climate Res., 28 , 143154.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247267.

    • Search Google Scholar
    • Export Citation
  • Koračin, D., J. Lewis, W. T. Thompson, C. E. Dorman, and J. A. Businger, 2001: Transition of stratus into fog along the California coast: Observations and modeling. J. Atmos. Sci., 58 , 17141731.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and G. A. Isaac, 2000: Drop growth due to high supersaturation caused by isobaric mixing. J. Atmos. Sci., 57 , 16751685.

    • Search Google Scholar
    • Export Citation
  • Leipper, D. F., 1994: Fog on the U.S. west coast: A review. Bull. Amer. Meteor. Soc., 75 , 229240.

  • Lewis, J. M., D. Koračin, R. Rabin, and J. Businger, 2003: Sea fog off the California coast: Viewed in the context of transient weather systems. J. Geophys. Res., 108 .4457, doi:10.1029/2002JD002833.

    • Search Google Scholar
    • Export Citation
  • Lewis, J. M., D. Koračin, and K. T. Redmond, 2004: Sea fog research in the United Kingdom and United States: A historical essay including outlook. Bull. Amer. Meteor. Soc., 85 , 395408.

    • Search Google Scholar
    • Export Citation
  • Lumb, F. E., 1961: The problem of forecasting the downward penetration of snow. Meteor. Mag., 90 , 310319.

  • Lumb, F. E., 1963: Downward penetration of snow in relation to the intensity of precipitation. Meteor. Mag., 92 , 114.

  • Mahrt, L., D. Vickers, and E. Moore, 2004: Flow adjustments across sea-surface temperature changes. Bound.-Layer Meteor., 111 , 553564.

    • Search Google Scholar
    • Export Citation
  • Mason, J., 1982: The physics of radiation fog. J. Meteor. Soc. Japan, 60 , 486498.

  • McNider, R. T., and R. A. Pielke, 1981: Diurnal boundary-layer development over sloping terrain. J. Atmos. Sci., 38 , 21982212.

  • Meyer, M. B., and G. G. Lala, 1990: Climatological aspects of radiation fog occurrence at Albany, New York. J. Climate, 3 , 577586.

  • Mitra, S. K., O. Vohl, M. Ahr, and H. R. Pruppacher, 1990: A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. Part IV: Experiment and theory of snow flakes. J. Atmos. Sci., 47 , 584591.

    • Search Google Scholar
    • Export Citation
  • National Center for Atmospheric Research, cited. 2007: TDL U.S. and Canada surface hourly observations. DOC/NOAA/NWS/OST/MDL Dataset 472.0. [Available online at http://dss.ucar.edu/datasets/ds472.0/.].

  • Noonkester, V. R., 1979: Coastal marine fog in southern California. Mon. Wea. Rev., 107 , 830851.

  • NWS Aviation Services Branch, 2004: Terminal aerodrome forecasts. NWS Instruction 10-813, 57 pp.

  • Palmer, A. H., 1917: Fog along the California coast. Mon. Wea. Rev., 45 , 496499.

  • Petterssen, S., 1938: On the cause and the forecasting of California fog. Bull. Amer. Meteor. Soc., 19 , 4955.

  • Petterssen, S., 1969: Introduction to Meteorology. 3rd ed. McGraw-Hill, 333 pp.

  • Pilié, R. J., E. J. Mack, W. C. Kocmond, W. J. Eadie, and C. W. Rogers, 1975: The life cycle of valley fog. Part I: Micrometeorological characteristics. J. Appl. Meteor., 14 , 347363.

    • Search Google Scholar
    • Export Citation
  • Pilié, R. J., E. J. Mack, C. W. Rogers, U. Katz, and W. C. Kocmond, 1979: The formation of marine fog and the development of fog-stratus systems along the California coast. J. Appl. Meteor., 18 , 12751286.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., J. Vivekanandan, J. Cole, B. Myers, and C. Masters, 1999: The estimation of snowfall rate using visibility. J. Appl. Meteor., 38 , 15421563.

    • Search Google Scholar
    • Export Citation
  • Roach, W., R. Brown, S. J. Caughey, J. A. Garland, and C. J. Readings, 1976: The physics of radiation fog: I—A field study. Quart. J. Roy. Meteor. Soc., 102 , 313333.

    • Search Google Scholar
    • Export Citation
  • Rodhe, B., 1962: The effect of turbulence on fog formation. Tellus, 14 , 4986.

  • Schwartz, B. E., and M. G. Govett, 1992: A hydrostatically consistent North American radiosonde data base at the Forecast Systems Laboratory, 1946-present. NOAA Tech. Memo. ERL FSL-4, 81 pp. [NTIS PB 112225.].

  • Sears-Collins, A. L., D. M. Schultz, and R. H. Johns, 2006: Spatial and temporal variability of nonfreezing drizzle in the United States and Canada. J. Climate, 19 , 36293639.

    • Search Google Scholar
    • Export Citation
  • Seinfeld, J. H., and S. N. Pandis, 1998: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley & Sons, 1326 pp.

    • Search Google Scholar
    • Export Citation
  • Setiono, R., S-L. Pan, M-H. Hsieh, and A. Azcarraga, 2005: Automatic knowledge extraction from survey data: Learning M-of-N constructs using a hybrid approach. J. Operation. Res. Soc., 56 , 314.

    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., 1997: Objective identification of cyclones and their circulation intensity, and climatology. Wea. Forecasting, 12 , 595612.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17 , 24662477.

  • Stewart, R. E., 1992: Precipitation types in the transition region of winter storms. Bull. Amer. Meteor. Soc., 73 , 287296.

  • Stewart, R. E., and D. T. Yiu, 1993: Distributions of precipitation and associated parameters across precipitation type transitions over southern Ontario. Atmos. Res., 29 , 153178.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., D. T. Yiu, K. K. Chung, D. R. Hudak, E. P. Lozowski, M. Oleskiw, B. E. Sheppard, and K. K. Szeto, 1995: Weather conditions associated with the passage of precipitation type transition regions over eastern Newfoundland. Atmos.–Ocean, 33 , 2553.

    • Search Google Scholar
    • Export Citation
  • Tardif, R., and R. M. Rasmussen, 2007: Event-based climatology and typology of fog in the New York City region. J. Appl. Meteor. Climatol., 46 , 11411168.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1917: The formation of fog and mist. Quart. J. Roy. Meteor. Soc., 43 , 241268.

  • Turton, J. D., and R. Brown, 1987: A comparison of a numerical model of radiation fog with detailed observations. Quart. J. Roy. Meteor. Soc., 113 , 3754.

    • Search Google Scholar
    • Export Citation
  • UCAR/COMET, cited. 2007: Synoptic weather considerations: Forecasting fog and low stratus. [Available online at http://www.meted.ucar.edu/dlac/lesson2a/.].

  • Underwood, S. J., G. P. Ellrod, and A. L. Kuhnert, 2004: A multiple-case analysis of nocturnal radiation-fog development in the Central Valley of California utilizing the GOES nighttime fog product. J. Appl. Meteor., 43 , 297311.

    • Search Google Scholar
    • Export Citation
  • Westcott, N., 2004: Synoptic conditions associated with dense fog in the Midwest. Proc. 14th Conf. on Applied Climatology, Seattle, WA, Amer. Meteor. Soc., P2.4. [Available online at http://ams.confex.com/ams/84Annual/techprogram/paper_72954.htm.].

  • Westcott, N., 2007: Some aspects of dense fog in the Midwestern United States. Wea. Forecasting, 22 , 457465.

  • Woodcock, A. H., 1978: Marine fog droplets and salt nuclei—Part I. J. Atmos. Sci., 35 , 657664.

  • Woodcock, A. H., 1984: Winds, upwelling and fog at Cape Cod Canal, Massachusetts. J. Climate Appl. Meteor., 23 , 611616.

  • Woodcock, A. H., D. C. Blanchard, and J. E. Jiusto, 1981: Marine fog droplets and salt nuclei—Part II. J. Atmos. Sci., 38 , 129140.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1580 1112 68
PDF Downloads 422 85 19