Effects of Future Climate and Biogenic Emissions Changes on Surface Ozone over the United States and China

Jin-Tai Lin Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Jin-Tai Lin in
Current site
Google Scholar
PubMed
Close
,
Kenneth O. Patten Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Kenneth O. Patten in
Current site
Google Scholar
PubMed
Close
,
Katharine Hayhoe Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois, and Department of Geosciences, Texas Tech University, Lubbock, Texas

Search for other papers by Katharine Hayhoe in
Current site
Google Scholar
PubMed
Close
,
Xin-Zhong Liang Illinois State Water Survey, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Xin-Zhong Liang in
Current site
Google Scholar
PubMed
Close
, and
Donald J. Wuebbles Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Donald J. Wuebbles in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Future projections of near-surface ozone concentrations depend on the climate/emissions scenario used to drive future simulations, the direct effects of the changing climate on the atmosphere, and the indirect effects of changing temperatures and CO2 levels on biogenic ozone precursor emissions. The authors investigate the influence of these factors on potential future changes in summertime daily 8-h maximum ozone over the United States and China by comparing Model for Ozone and Related Chemical Tracers, version 2.4, (MOZART-2.4) simulations for the period 1996–2000 with 2095–99, using climate projections from NCAR–Department of Energy Parallel Climate Model simulations driven by the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios A1fi (higher) and B1 (lower) emission scenarios, with corresponding changes in biogenic emissions. The effect of projected climate changes alone on surface ozone is generally less than 3 ppb over most regions. Regional ozone increases and decreases are driven mainly by local warming and marine air dilution enhancement, respectively. Changes are approximately the same magnitude under both scenarios, although spatial patterns of responses differ. Projected increases in isoprene emissions (32%–94% over both countries), however, result in significantly greater changes in surface ozone. Increases of 1–15 ppb are found under A1fi and of 0–7 ppb are found under B1. These increases not only raise the frequency of “high ozone days,” but are also projected to occur nearly uniformly across the distribution of daily ozone maxima. Thus, projected future ozone changes appear to be more sensitive to changes in biogenic emissions than to direct climate changes, and the spatial patterns and magnitude of future ozone changes depend strongly on the future emissions scenarios used.

Corresponding author address: Donald J. Wuebbles, Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory St., Urbana, IL 61801. Email: wuebbles@atmos.uiuc.edu

Abstract

Future projections of near-surface ozone concentrations depend on the climate/emissions scenario used to drive future simulations, the direct effects of the changing climate on the atmosphere, and the indirect effects of changing temperatures and CO2 levels on biogenic ozone precursor emissions. The authors investigate the influence of these factors on potential future changes in summertime daily 8-h maximum ozone over the United States and China by comparing Model for Ozone and Related Chemical Tracers, version 2.4, (MOZART-2.4) simulations for the period 1996–2000 with 2095–99, using climate projections from NCAR–Department of Energy Parallel Climate Model simulations driven by the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios A1fi (higher) and B1 (lower) emission scenarios, with corresponding changes in biogenic emissions. The effect of projected climate changes alone on surface ozone is generally less than 3 ppb over most regions. Regional ozone increases and decreases are driven mainly by local warming and marine air dilution enhancement, respectively. Changes are approximately the same magnitude under both scenarios, although spatial patterns of responses differ. Projected increases in isoprene emissions (32%–94% over both countries), however, result in significantly greater changes in surface ozone. Increases of 1–15 ppb are found under A1fi and of 0–7 ppb are found under B1. These increases not only raise the frequency of “high ozone days,” but are also projected to occur nearly uniformly across the distribution of daily ozone maxima. Thus, projected future ozone changes appear to be more sensitive to changes in biogenic emissions than to direct climate changes, and the spatial patterns and magnitude of future ozone changes depend strongly on the future emissions scenarios used.

Corresponding author address: Donald J. Wuebbles, Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory St., Urbana, IL 61801. Email: wuebbles@atmos.uiuc.edu

Save
  • Adams, B., A. White, and T. Lenton, 2004: An analysis of some diverse approaches to modelling terrestrial net primary productivity. Ecol. Modell., 177 , 353391.

    • Search Google Scholar
    • Export Citation
  • Bueh, C., 2003: Simulation of the future change of Asian monsoon climate using the IPCC SRES A2 and B2 scenarios. Chin. Sci. Bull., 48 , 10241030.

    • Search Google Scholar
    • Export Citation
  • Bueh, C., U. Cubasch, and S. Hagemann, 2003: Impacts of global warming on changes in the East Asian monsoon and the related river discharge in a global time-slice experiment. Climate Res., 24 , 4757.

    • Search Google Scholar
    • Export Citation
  • Cheng, Y., V. M. Canuto, and A. M. Howard, 2002: An improved model for the turbulent PBL. J. Atmos. Sci., 59 , 15501565.

  • Dawson, J. P., P. J. Adams, and S. N. Pandis, 2007: Sensitivity of ozone to summertime climate in the eastern USA: A modeling case study. Atmos. Environ., 41 , 14941511.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., and A. B. Wolf, 2000: The temperature dependence of liquid water path of low clouds in the southern Great Plains. J. Climate, 13 , 34653486.

    • Search Google Scholar
    • Export Citation
  • Delon, C., D. Serca, C. Boissard, R. Dupont, A. Dutot, P. Laville, P. D. Rosnay, and R. Delmas, 2007: Soil NO emissions modelling using artificial neural network. Tellus, 59B , 502513.

    • Search Google Scholar
    • Export Citation
  • Denman, K. L., and Coauthors, 2007: Couplings between changes in the climate system and biogeochemistry. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 499–588.

    • Search Google Scholar
    • Export Citation
  • Ehhalt, D., and Coauthors, 2001: Atmospheric chemistry and greenhouse gases. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 239–287.

    • Search Google Scholar
    • Export Citation
  • Fiore, A. M., L. W. Horowitz, D. W. Purves, H. Levy II, M. J. Evans, Y. Wang, Q. Li, and R. M. Yantosca, 2005: Evaluating the contribution of changes in isoprene emissions to surface ozone trends over the eastern United States. J. Geophys. Res., 110 .D12303, doi:10.1029/2004JD005485.

    • Search Google Scholar
    • Export Citation
  • Guenther, A., 1997: Seasonal and spatial variations in natural volatile organic compound emissions. Ecol. Appl., 7 , 3445.

  • Hauglustaine, D. A., J. Lathière, S. Szopa, and G. A. Folberth, 2005: Future tropospheric ozone simulated with a climate–chemistry–biosphere model. Geophys. Res. Lett., 32 .L24807, doi:10.1029/2005GL024031.

    • Search Google Scholar
    • Export Citation
  • Hogrefe, C., and Coauthors, 2004: Simulating changes in regional air pollution over the eastern United States due to changes in global and regional climate and emissions. J. Geophys. Res., 109 .D22301, doi:10.1029/2004JD004690.

    • Search Google Scholar
    • Export Citation
  • Horowitz, L. W., and Coauthors, 2003: A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2. J. Geophys. Res., 108 .4784, doi:10.1029/2002JD002853.

    • Search Google Scholar
    • Export Citation
  • Horowitz, L. W., and Coauthors, 2007: Observational constraints on the chemistry of isoprene nitrates over the eastern United States. J. Geophys. Res., 112 .D120S8, doi:10.1029/2006JD007747.

    • Search Google Scholar
    • Export Citation
  • Johnson, C. E., W. J. Collins, D. S. Stevenson, and R. G. Derwent, 1999: Relative roles of climate and emissions changes on future tropospheric oxidant concentrations. J. Geophys. Res., 104 , D15. 1863118645.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., and Coauthors, 2008: Sensitivity of future ozone concentrations in the northeast U.S.A. to regional climate change. Mitig. Adapt. Strat. Global Change, 13 , 597606.

    • Search Google Scholar
    • Export Citation
  • Lamarque, J-F., P. Hess, L. Emmons, L. Buja, W. Washington, and C. Granier, 2005: Tropospheric ozone evolution between 1890 and 1990. J. Geophys. Res., 110 .D08304, doi:10.1029/2004JD005537.

    • Search Google Scholar
    • Export Citation
  • Leith, H., 1975: Modeling the primary productivity of the world. Primary Productivity of the Biosphere, H. Leith and R. H. Whittaker, Eds., Springer-Verlag, 237–263.

    • Search Google Scholar
    • Export Citation
  • Li, X., Z. He, X. Fang, and X. Zhou, 1999: Distribution of surface ozone concentration in the clean areas of China and its possible impact on crop yields. Adv. Atmos. Sci., 16 , 154158.

    • Search Google Scholar
    • Export Citation
  • Lin, J-T., D. J. Wuebbles, and X-Z. Liang, 2008: Effects of intercontinental transport on surface ozone over the United States: Present and future assessment with a global model. Geophys. Res. Lett., 35 .L02805, doi:10.1029/2007GL031415.

    • Search Google Scholar
    • Export Citation
  • Mauzerall, D. L., D. Narita, H. Akimoto, L. Horowitz, S. Walters, D. A. Hauglustaine, and G. Brasseur, 2000: Seasonal characteristics of tropospheric ozone production and mixing ratios over East Asia: A global three-dimensional chemical transport model analysis. J. Geophys. Res., 105 , D14. 1789517910.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–846.

    • Search Google Scholar
    • Export Citation
  • Mickley, L. J., D. J. Jacob, B. D. Field, and D. Rind, 2004: Effects of future climate change on regional air pollution episodes in the United States. Geophys. Res. Lett., 31 .L24103, doi:10.1029/2004GL021216.

    • Search Google Scholar
    • Export Citation
  • Murazaki, K., and P. Hess, 2006: How does climate change contribute to surface ozone change over the United States? J. Geophys. Res., 111 .D05301, doi:10.1029/2005JD005873.

    • Search Google Scholar
    • Export Citation
  • Padro, J., 1996: Summary of ozone dry deposition velocity measurements and model estimates over vineyard, cotton, grass, and deciduous forest in summer. Atmos. Environ., 13 , 23632369.

    • Search Google Scholar
    • Export Citation
  • Pickering, K. E., Y. Wang, W-K. Tao, C. Price, and J-F. Müller, 1998: Vertical distributions of lighting NOx for use in regional and global chemical transport models. J. Geophys. Res., 103 , 3120331216.

    • Search Google Scholar
    • Export Citation
  • Pochanart, P., H. Akimoto, Y. Kinjo, and H. Tanimoto, 2002: Surface ozone at four remote island sites and the preliminary assessment of the exceedences of its critical level in Japan. Atmos. Environ., 36 , 42354250.

    • Search Google Scholar
    • Export Citation
  • Potosnak, M., 2002: Effects of growth carbon dioxide concentration on isoprene emissions from plants. Ph.D. thesis, Columbia University, 140 pp.

  • Prentice, I. C., and Coauthors, 2001: The carbon cycle and atmospheric carbon dioxide. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 183–237.

    • Search Google Scholar
    • Export Citation
  • Price, C., J. Penner, and M. Prather, 1997: NOx from lightning. 1. Global distribution based on lightning physics. J. Geophys. Res., 102 , 59295941.

    • Search Google Scholar
    • Export Citation
  • Racherla, P. N., and P. J. Adams, 2006: Sensitivity of global tropospheric ozone and fine particulate matter concentrations to climate change. J. Geophys. Res., 111 .D24103, doi:10.1029/2005JD006939.

    • Search Google Scholar
    • Export Citation
  • Schindlbacher, A., S. Zechmeister-Boltenstern, and K. Butterbach-Bahl, 2004: Effects of soil moisture and temperature on NO, NO2, and N2O emissions from European forest soils. J. Geophys. Res., 109 .D17302, doi:10.1029/2004JD004590.

    • Search Google Scholar
    • Export Citation
  • Sillman, S., and P. J. Samson, 1995: Impact of temperature on oxidant photochemistry in urban, polluted rural and remote environments. J. Geophys. Res., 100 , 1149711508.

    • Search Google Scholar
    • Export Citation
  • Sprengnether, M., K. L. Demerjian, N. M. Donahue, and J. G. Anderson, 2002: Product analysis of the OH oxidation of isoprene and 1, 3-butadiene in the presence of NO. J. Geophys. Res., 107 .4268, doi:10.1029/2001JD000716.

    • Search Google Scholar
    • Export Citation
  • Steiner, A. L., S. Tonse, R. C. Cohen, A. H. Goldstein, and R. A. Harley, 2006: Influence of future climate and emissions on regional air quality in California. J. Geophys. Res., 111 .D18303, doi:10.1029/2005JD006935.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Tao, Z., S. M. Larson, D. J. Wuebbles, A. Williams, and M. Caughey, 2003: A summer simulation of biogenic contribution to ground-level ozone over the continental United States. J. Geophys. Res., 108 .4404, doi:10.1029/2002JD002945.

    • Search Google Scholar
    • Export Citation
  • Tao, Z., A. Williams, H-C. Huang, M. Caughey, and X-Z. Liang, 2007: Sensitivity of U.S. surface ozone to future emissions and climate changes. Geophys. Res. Lett., 34 .L08811, doi:10.1029/2007GL029455.

    • Search Google Scholar
    • Export Citation
  • Tao, Z., A. Williams, H-C. Huang, M. Caughey, and X-Z. Liang, 2008: Sensitivity of surface ozone simulation to cumulus parameterization. J. Appl. Meteor. Climatol., 47 , 14561466.

    • Search Google Scholar
    • Export Citation
  • Tie, X., and Coauthors, 2006: Chemical characterization of air pollution in Eastern China and the Eastern United States. Atmos. Environ., 40 , 26072625.

    • Search Google Scholar
    • Export Citation
  • Wang, H., L. Zhou, and X. Tang, 2006: Ozone concentrations in rural regions of the Yangtze Delta in China. J. Atmos. Chem., 54 , 255265. doi:10.1007/s10874-006-9024-z.

    • Search Google Scholar
    • Export Citation
  • Washington, W. M., and Coauthors, 2000: Parallel climate model (PCM) control and transient simulations. Climate Dyn., 16 , 755774.

  • Wei, C-F., and Coauthors, 2002: Seasonal variability of ozone mixing ratios and budgets in the tropical southern Pacific: A GCTM perspective. J. Geophys. Res., 107 .8235, doi:10.1029/2001JD000772.

    • Search Google Scholar
    • Export Citation
  • Wesely, M. L., 1989: Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmos. Environ., 23 , 12931304.

    • Search Google Scholar
    • Export Citation
  • Wesely, M. L., and B. B. Hicks, 2000: A review of the current status of knowledge on dry deposition. Atmos. Environ., 34 , 22612282.

  • Wuebbles, D. J., K. O. Patten, M. T. Johnson, and R. Kotanarthi, 2001: New methodology for ozone depletion potentials of short-lived compounds: n-Propyl bromide as an example. J. Geophys. Res., 106 , 1455114572.

    • Search Google Scholar
    • Export Citation
  • Yan, P., M. Wang, H. Cheng, and X-J. Zhou, 2003: Distributions and variations of surface ozone in Changshu, Yangtze Delta region. Acta Meteor. Sinica, 17 , 205217.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., J. Padro, and J. L. Walmsley, 1996: A multi-layer model vs single-layer models and observed O3 dry deposition velocities. Atmos. Environ., 30 , 339345.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1929 1212 53
PDF Downloads 474 114 1