The Impact of Nudging in the Meteorological Model for Retrospective Air Quality Simulations. Part II: Evaluating Collocated Meteorological and Air Quality Observations

Tanya L. Otte Atmospheric Sciences Modeling Division, NOAA/Air Resources Laboratory,* Research Triangle Park, North Carolina

Search for other papers by Tanya L. Otte in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

For air quality modeling, it is important that the meteorological fields that are derived from meteorological models reflect the best characterization of the atmosphere. It is well known that the accuracy and overall representation of the modeled meteorological fields can be improved for retrospective simulations by creating dynamic analyses in which Newtonian relaxation, or “nudging,” is used throughout the simulation period. This article, the second of two parts, provides additional insight into the value of using nudging-based data assimilation for dynamic analysis in the meteorological fields for air quality modeling. Meteorological simulations are generated by the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) using both the traditional dynamic analysis approach and forecasts for a summertime period. The resultant meteorological fields are then used for emissions processing and air quality simulations using the Community Multiscale Air Quality Modeling System (CMAQ). The predictions of surface and near-surface meteorological fields and ozone are compared with a small network of collocated meteorological and air quality observations. Comparisons of 2-m temperature, 10-m wind speed, and surface shortwave radiation show a significant degradation over time when nudging is not used, whereas the dynamic analyses maintain consistent statistical scores over time for those fields. Using nudging in MM5 to generate dynamic analyses, on average, leads to a CMAQ simulation of hourly ozone with smaller error. Domainwide error patterns in specific meteorological fields do not directly or systematically translate into error patterns in ozone prediction at these sites, regardless of whether nudging is used in MM5, but large broad-scale errors in shortwave radiation prediction by MM5 directly affect ozone prediction by CMAQ at specific sites.

* In partnership with the U.S. EPA National Exposure Research Laboratory

Corresponding author address: Tanya L. Otte, NOAA/Atmospheric Sciences Modeling Division, U.S. EPA Mail Drop E243-03, 109 T. W. Alexander Dr., Research Triangle Park, NC 27711. Email: tanya.otte@noaa.gov

Abstract

For air quality modeling, it is important that the meteorological fields that are derived from meteorological models reflect the best characterization of the atmosphere. It is well known that the accuracy and overall representation of the modeled meteorological fields can be improved for retrospective simulations by creating dynamic analyses in which Newtonian relaxation, or “nudging,” is used throughout the simulation period. This article, the second of two parts, provides additional insight into the value of using nudging-based data assimilation for dynamic analysis in the meteorological fields for air quality modeling. Meteorological simulations are generated by the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) using both the traditional dynamic analysis approach and forecasts for a summertime period. The resultant meteorological fields are then used for emissions processing and air quality simulations using the Community Multiscale Air Quality Modeling System (CMAQ). The predictions of surface and near-surface meteorological fields and ozone are compared with a small network of collocated meteorological and air quality observations. Comparisons of 2-m temperature, 10-m wind speed, and surface shortwave radiation show a significant degradation over time when nudging is not used, whereas the dynamic analyses maintain consistent statistical scores over time for those fields. Using nudging in MM5 to generate dynamic analyses, on average, leads to a CMAQ simulation of hourly ozone with smaller error. Domainwide error patterns in specific meteorological fields do not directly or systematically translate into error patterns in ozone prediction at these sites, regardless of whether nudging is used in MM5, but large broad-scale errors in shortwave radiation prediction by MM5 directly affect ozone prediction by CMAQ at specific sites.

* In partnership with the U.S. EPA National Exposure Research Laboratory

Corresponding author address: Tanya L. Otte, NOAA/Atmospheric Sciences Modeling Division, U.S. EPA Mail Drop E243-03, 109 T. W. Alexander Dr., Research Triangle Park, NC 27711. Email: tanya.otte@noaa.gov

Save
  • Angevine, W. M., and K. Mitchell, 2001: Evaluation of the NCEP mesoscale Eta Model convective boundary layer for air quality applications. Mon. Wea. Rev., 129 , 27612775.

    • Search Google Scholar
    • Export Citation
  • Appel, K. W., A. B. Gilliland, G. Sarwar, and R. C. Gilliam, 2007: Evaluation of the Community Multiscale Air Quality (CMAQ) model version 4.5: Uncertainties and sensitivities impacting model performance. Part I—Ozone. Atmos. Environ., 41 , 96039615.

    • Search Google Scholar
    • Export Citation
  • Barna, M., and B. Lamb, 2000: Improving ozone modeling in regions of complex terrain using observational nudging in a prognostic meteorological model. Atmos. Environ., 34 , 48894906.

    • Search Google Scholar
    • Export Citation
  • Berman, S., J-Y. Ku, and S. T. Rao, 1999: Spatial and temporal variation in the mixing depth over the northeastern United States during the summer of 1995. J. Appl. Meteor., 38 , 16611673.

    • Search Google Scholar
    • Export Citation
  • Biswas, J., and S. T. Rao, 2001: Uncertainties in episodic ozone modeling stemming from uncertainties in meteorological fields. J. Appl. Meteor., 40 , 117136.

    • Search Google Scholar
    • Export Citation
  • Byun, D., and K. L. Schere, 2006: Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System. Appl. Mech. Rev., 59 , 5177.

    • Search Google Scholar
    • Export Citation
  • Chiriaco, M., R. Vautard, H. Chepfer, H. Haeffelin, J. Dudhia, Y. Wanherdrick, Y. Morille, and A. Protat, 2006: The ability of MM5 to simulate ice clouds: Systematic comparison between simulated and measured fluxes and lidar/radar profiles at the SIRTA atmospheric observatory. Mon. Wea. Rev., 134 , 897918.

    • Search Google Scholar
    • Export Citation
  • Eder, B., and S. Yu, 2006: A performance evaluation of the 2004 release of Models-3 CMAQ. Atmos. Environ., 40 , 48114824.

  • Eder, B., D. Kang, R. Mathur, S. Yu, and K. Schere, 2006: An operational evaluation of the Eta–CMAQ air quality forecast model. Atmos. Environ., 40 , 48944905.

    • Search Google Scholar
    • Export Citation
  • Flaum, J. B., S. T. Rao, and I. G. Zurbenko, 1996: Moderating the influence of meteorological conditions on ambient ozone concentrations. J. Air Waste Manage. Assoc., 46 , 3546.

    • Search Google Scholar
    • Export Citation
  • Gilliam, R. C., C. Hogrefe, and S. T. Rao, 2006: New methods for evaluating meteorological models used in air quality applications. Atmos. Environ., 40 , 50735086.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 138 pp.

  • Grell, G. A., S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock, and B. Eder, 2005: Fully coupled “online” chemistry within the WRF Model. Atmos. Environ., 39 , 69576975.

    • Search Google Scholar
    • Export Citation
  • Hanna, S. R., and R. Yang, 2001: Evaluations of mesoscale models’ simulations of near-surface winds, temperature gradients, and mixing depths. J. Appl. Meteor., 40 , 10951104.

    • Search Google Scholar
    • Export Citation
  • Hogrefe, C., S. T. Rao, I. G. Zurbenko, and P. S. Porter, 2000: Interpreting the information in ozone observations and model predictions relevant to regulatory policies in the eastern United States. Bull. Amer. Meteor. Soc., 81 , 20832106.

    • Search Google Scholar
    • Export Citation
  • Hogrefe, C., and Coauthors, 2001a: Evaluating the performance of regional-scale photochemical modeling systems: Part I—Meteorological predictions. Atmos. Environ., 35 , 41594174.

    • Search Google Scholar
    • Export Citation
  • Hogrefe, C., S. T. Rao, P. Kasibhatla, W. Hao, G. Sistla, R. Mathur, and J. McHenry, 2001b: Evaluating the performance of regional-scale photochemical modeling systems: Part II—Ozone predictions. Atmos. Environ., 35 , 41754188.

    • Search Google Scholar
    • Export Citation
  • Hogrefe, C., P. S. Porter, E. Gego, A. Gilliland, R. Gilliam, J. Swall, J. Irwin, and S. T. Rao, 2006: Temporal features in observed and simulated meteorology and air quality over the eastern United States. Atmos. Environ., 40 , 50415055.

    • Search Google Scholar
    • Export Citation
  • Houyoux, M. R., J. M. Vukovich, C. J. Coats Jr., N. M. Wheeler, and P. S. Kasibhatla, 2000: Emission inventory development and processing for the Seasonal Model for Regional Air Quality (SMRAQ) project. J. Geophys. Res., 105 , 90799090.

    • Search Google Scholar
    • Export Citation
  • Jacobson, M. Z., 2001: GATOR-GCMM: A global- through urban-scale air pollution and weather forecast model. 1. Model design and treatment of subgrid soil, vegetation, roads, rooftops, water, sea ice, and snow. J. Geophys. Res., 106 , 53855402.

    • Search Google Scholar
    • Export Citation
  • Ku, J-Y., H. Mao, K. Zhang, K. Civerolo, S. T. Rao, C. R. Philbrick, B. Doddridge, and R. Clark, 2001: Numerical investigation of the effects of boundary-layer evolution on the predictions of ozone and the efficacy of emission control options in the northeastern United States. Environ. Fluid Mech., 1 , 209233.

    • Search Google Scholar
    • Export Citation
  • Lavery, T. F., C. M. Rogers, H. K. Howell, M. C. Burnett, C. A. Wanta, and M. O. Stewart, 2002: Clean Air Status and Trends Network (CASTNet) 2001 annual report. Harding ESE Rep. to the U.S. Environmental Protection Agency, 147 pp. [Available online at http://www.epa.gov/castnet/library/annual01.html.].

  • Lee, S-M., S-C. Yoon, and D. W. Byun, 2004: The effect of mass inconsistency of the meteorological field generated by a common meteorological model on air quality modeling. Atmos. Environ., 38 , 29172926.

    • Search Google Scholar
    • Export Citation
  • Liu, G., C. Hogrefe, and S. T. Rao, 2003: Evaluating the performance of regional-scale meteorological models: Effect of clouds simulation on temperature prediction. Atmos. Environ., 37 , 14251433.

    • Search Google Scholar
    • Export Citation
  • Milanchus, M. L., S. T. Rao, and I. G. Zurbenko, 1998: Evaluating the effectiveness of ozone management efforts in the presence of meteorological variability. J. Air Waste Manage. Assoc., 48 , 201215.

    • Search Google Scholar
    • Export Citation
  • Otte, T. L., 2008: The impact of nudging in the meteorological model for retrospective air quality simulations. Part I: Evaluation against national observation networks. J. Appl. Meteor. Climatol., 47 , 18531867.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., and M. Uliasz, 1998: Use of meteorological models as input to regional and mesoscale air quality models—Limitations and strengths. Atmos. Environ., 32 , 14551466.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., 2007: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteor. Climatol., 46 , 13831395.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., and A. Xiu, 2003: Development of a land surface model. Part II: Data assimilation. J. Appl. Meteor., 42 , 18111822.

  • Rao, S. T., I. G. Zurbenko, R. Neagu, P. S. Porter, J. Y. Ku, and R. F. Henry, 1997: Space and time scales in ambient ozone data. Bull. Amer. Meteor. Soc., 78 , 21532166.

    • Search Google Scholar
    • Export Citation
  • Seaman, N. L., 2000: Meteorological modeling for air-quality assessments. Atmos. Environ., 34 , 22312259.

  • Stauffer, D. R., and N. L. Seaman, 1990: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synoptic-scale data. Mon. Wea. Rev., 118 , 12501277.

    • Search Google Scholar
    • Export Citation
  • Stauffer, D. R., and N. L. Seaman, 1994: Multiscale four-dimensional data assimilation. J. Appl. Meteor., 33 , 416434.

  • Stauffer, D. R., N. L. Seaman, and F. S. Binkowski, 1991: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part II: Effects of data assimilation within the planetary boundary layer. Mon. Wea. Rev., 119 , 734754.

    • Search Google Scholar
    • Export Citation
  • Tanrikulu, S., D. R. Stauffer, N. L. Seaman, and A. J. Ranzieri, 2000: A field-coherence technique for meteorological field-program design for air quality studies. Part II: Evaluation in the San Joaquin Valley. J. Appl. Meteor., 39 , 317334.

    • Search Google Scholar
    • Export Citation
  • Umeda, T., and P. T. Martien, 2002: Evaluation of a data assimilation technique for a mesoscale meteorological model used for air quality modeling. J. Appl. Meteor., 41 , 1229.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., 1982: Some comments on the evaluation of model performance. Bull. Amer. Meteor. Soc., 63 , 13091313.

  • Willmott, C. J., and K. Matsuura, 2005: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Res., 30 , 7982.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., and K. Matsuura, 2006: On the use of dimensioned measures of error to evaluate the performance of spatial interpolators. Int. J. Geog. Info. Sci., 20 , 89102.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., S. G. Ackleson, R. E. Davis, J. J. Feddema, K. M. Klink, D. R. Legates, J. O’Donnell, and C. M. Rowe, 1985: Statistics for the evaluation and comparison of models. J. Geophys. Res., 90 , 89959005.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1879 1436 31
PDF Downloads 404 67 2