• Bannon, J. K., 1952: Weather systems associated with some occasions of severe turbulence at high altitude. Meteor. Mag., 81 , 97101.

  • Bass, E. J., 1999: Toward a pilot-centered turbulence assessment and monitoring system. Proc. 18th Digital Avionics Systems Conf., Vol. 2, St. Louis, MO, IEEE, 6.D.3-1–6.D.3-8.

  • Benjamin, S. G., J. M. Brown, K. J. Brundage, B. Schwartz, T. Smirnova, T. L. Smith, L. L. Morone, and G. J. DiMego, 1998: The operational RUC-2. Preprints, 16th Conf. on Weather Analysis and Forecasting, Phoenix, AZ, Amer. Meteor. Soc., 249–252.

  • Benjamin, S. G., G. A. Grell, J. M. Brown, T. G. Smirnova, and R. Bleck, 2004: Mesoscale weather prediction with the RUC hybrid isentropic-terrain-following coordinate model. Mon. Wea. Rev., 132 , 473494.

    • Search Google Scholar
    • Export Citation
  • Bernstein, B. C., F. McDonough, M. K. Politovich, B. G. Brown, T. P. Ratvasky, D. R. Miller, C. A. Wolff, and G. Cunning, 2005: Current icing potential: Algorithm description and comparison with aircraft observations. J. Appl. Meteor., 44 , 969986.

    • Search Google Scholar
    • Export Citation
  • Calabrese, P. A., 1966: Forecasting mountain waves. United States Weather Bureau Tech. Memo. FCST-6, 12 pp.

  • Chandler, C. L., 1987: Turbulence forecasting. Atmospheric turbulence relative to aviation, missile, and space programs, NASA Conference Publication 2468, Langley Research Center, 137–154.

  • Changnon, S. A., 1989: Relations of thunderstorms and cloud-to-ground lightning frequencies. J. Climate, 2 , 897921.

  • Colson, D., 1961: Analysis of clear air turbulence during April 1960. Mon. Wea. Rev., 89 , 9498.

  • Colson, D., 1963a: Analysis of clear air turbulence data during March 1962. Mon. Wea. Rev., 91 , 7382.

  • Colson, D., 1963b: Summary of high level turbulence over United States. Mon. Wea. Rev., 91 , 605609.

  • Colson, D., 1969: Clear air turbulence and upper level meteorological patterns. Clear Air Turbulence and Its Detection, Y. H. Pao and A. Goldburg, Eds., Plenum, 337–360.

    • Search Google Scholar
    • Export Citation
  • Cornman, L. B., C. S. Morse, and G. Cunning, 1995: Real-time estimation of atmospheric turbulence severity from in-situ aircraft measurements. J. Aircr., 32 , 171177.

    • Search Google Scholar
    • Export Citation
  • Cornman, L. B., G. Meymaris, and M. Limber, 2004: An update on the FAA Aviation Weather Research Program’s in situ turbulence measurement and report system. Preprints, 11th Conf. on Aviation, Range, and Aerospace Meteorology, Hyannis, MA, Amer. Meteor. Soc., P4.3.

  • Dutton, J. A., and H. A. Panofsky, 1970: Clear air turbulence: A mystery may be unfolding. Science, 167 , 937944.

  • Ellrod, G. P., and D. L. Knapp, 1992: An objective clear-air turbulence forecasting technique: Verification and operational use. Wea. Forecasting, 7 , 150165.

    • Search Google Scholar
    • Export Citation
  • Ellrod, G., P. F. Lester, and L. J. Ehernberger, 2003: Clear air turbulence. Encyclopedia of Atmospheric Sciences, Vol. 1, J. R. Holton et al., Eds., Academic Press, 393–403.

    • Search Google Scholar
    • Export Citation
  • Fahey, T. H., M. Pfleiderer, and R. Sharman, 2002: Mountain wave activity & turbulence—Aviation forecasts & avoidance. Preprints, 10th Conf. on Aviation, Range, and Aerospace Meteorology, Portland, OR, Amer. Meteor. Soc., 303–306.

  • Foltz, H. P., 1966: Prediction of clear-air turbulence. Dept. of Atmospheric Sciences, Colorado State University, Atmospheric Science Paper 106, 145 pp.

  • Fovell, R. G., R. D. Sharman, and S. B. Trier, 2007: A case study of convectively-induced clear-air turbulence. Preprints, 12th Conf. on Mesoscale Processes, Waterville Valley, NH, Amer. Meteor. Soc., P13.4.

  • Fritts, D. C., and G. D. Nastrom, 1992: Sources of mesoscale variability of gravity waves. Part II: Frontal, convective, and jet stream excitation. J. Atmos. Sci., 49 , 111127.

    • Search Google Scholar
    • Export Citation
  • Guest, F. M., M. J. Reeder, C. J. Marks, and D. J. Karoly, 2000: Inertia–gravity waves observed in the lower stratosphere over Macquarie Island. J. Atmos. Sci., 57 , 737752.

    • Search Google Scholar
    • Export Citation
  • Hocking, W. K., 1992: On the relationship between the strength of atmospheric radar backscatter and the intensity of atmospheric turbulence. Adv. Space Res., 12 , 207213.

    • Search Google Scholar
    • Export Citation
  • Hocking, W. K., 1996: An assessment of the capabilities and limitations of radars in measurements of upper atmosphere turbulence. Adv. Space Res., 17 , 3747.

    • Search Google Scholar
    • Export Citation
  • Hopkins, R. H., 1977: Forecasting techniques of clear-air turbulence including that associated with mountain waves. WMO Tech. Note 155, 31 pp.

  • Huffines, G. R., and R. E. Orville, 1999: Lightning ground flash density and thunderstorm duration in the continental United States: 1989–96. J. Appl. Meteor., 38 , 10131019.

    • Search Google Scholar
    • Export Citation
  • Jacobi, Ch, A. H. Siemer, and R. Roth, 1996: On wind shear at fronts and inversions. Meteor. Atmos. Phys., 59 , 235243.

  • Jaeger, E. B., and M. Sprenger, 2007: A Northern Hemispheric climatology of indices for clear air turbulence in the tropopause region derived from ERA40 reanalysis data. J. Geophys. Res., 112 .D20106, doi:10.1029/2006JD008189.

    • Search Google Scholar
    • Export Citation
  • Kennedy, P. J., and M. A. Shapiro, 1980: Further encounters with clear air turbulence in research aircraft. J. Atmos. Sci., 37 , 986993.

    • Search Google Scholar
    • Export Citation
  • Kim, Y-J., and A. Arakawa, 1995: Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. J. Atmos. Sci., 52 , 18751902.

    • Search Google Scholar
    • Export Citation
  • Koch, P., H. Wernli, and H. W. Davies, 2006: An event-based jet-stream climatology and typology. Int. J. Climatol., 26 , 283301.

  • Lane, T. P., and R. D. Sharman, 2006: Gravity wave breaking, secondary wave generation, and mixing above deep convection in a three-dimensional cloud model. Geophys. Res. Lett., 33 .L23813, doi:10.1029/2006GL027988.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., R. D. Sharman, T. L. Clark, and H-M. Hsu, 2003: An investigation of turbulence generation mechanisms above deep convection. J. Atmos. Sci., 60 , 12971321.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., J. D. Doyle, R. Plougonven, M. A. Shapiro, and R. D. Sharman, 2004: Observations and numerical simulations of inertia-gravity waves and shearing instabilities in the vicinity of a jet stream. J. Atmos. Sci., 61 , 26922706.

    • Search Google Scholar
    • Export Citation
  • Lee, D. R., R. B. Stull, and W. S. Irvine, 1984: Clear air turbulence forecasting techniques. Air Force Weather Service Rep. AFGWC/TN-79-001 (rev.), 76 pp.

  • Lester, P. F., 1993: Turbulence: A New Perspective for Pilots. Jeppesen Sanderson, 212 pp.

  • Lilly, D. K., D. E. Waco, and S. I. Adelfang, 1974: Stratospheric mixing estimated from high-altitude turbulence measurements. J. Appl. Meteor., 13 , 488493.

    • Search Google Scholar
    • Export Citation
  • Mastrantonio, G., F. Einaudi, D. Fua, and D. Lalas, 1976: Generation of gravity waves by jet streams in the atmosphere. J. Atmos. Sci., 33 , 17301738.

    • Search Google Scholar
    • Export Citation
  • McHugh, J. P., 2007: Mean flow generated by an internal wave packet impinging on the interface between two layers of fluid with continuous density. Theor. Comput. Fluid Dyn., 22 , 107123.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1999: Genesis and evolution of the 1997–98 El Niño. Science, 283 , 950954.

  • Miller, M. J., and R. Swinbank, 1989: Parameterization and influence of subgridscale orography in general circulation and numerical weather prediction models. Meteor. Atmos. Phys., 40 , 84109.

    • Search Google Scholar
    • Export Citation
  • Muschinski, A., 1997: Turbulence and gravity waves in the vicinity of a midtropospheric warm front: A case study using VHF echo-intensity measurements and radiosonde data. Radio Sci., 32 , 11611178.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., and D. C. Fritts, 1992: Sources of mesoscale variability of gravity waves. Part I: Topographic excitation. J. Atmos. Sci., 49 , 101110.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., and F. D. Eaton, 1997: Turbulence eddy dissipation rates from radar observations at 5–20 km at White Sands Missile Range, New Mexico. J. Geophys. Res., 102 , 1949519505.

    • Search Google Scholar
    • Export Citation
  • Nicholls, J. M., 1973: The airflow over mountains: Research 1958–1972. WMO Tech. Note 127, 73 pp.

  • O’Sullivan, D., and T. J. Dunkerton, 1995: Generation of inertia-gravity waves in a simulated life cycle of baroclinic instability. J. Atmos. Sci., 52 , 36953716.

    • Search Google Scholar
    • Export Citation
  • Pantley, K. C., and P. F. Lester, 1990: Observations of severe turbulence near thunderstorm tops. J. Appl. Meteor., 29 , 11711179.

  • Partl, W., 1962: Clear air turbulence at the tropopause levels. Navigation, 9 , 288295.

  • Reap, R. M., and D. R. MacGorman, 1989: Cloud-to-ground lightning: Climatological characteristics and relationships to model fields, radar observations, and severe local storms. Mon. Wea. Rev., 117 , 518535.

    • Search Google Scholar
    • Export Citation
  • Reeder, M. J., and M. Griffiths, 1996: Stratospheric inertia-gravity waves generated in a numerical model of frontogenesis. II: Waves sources, generation mechanisms and momentum fluxes. Quart. J. Roy. Meteor. Soc., 122 , 11751195.

    • Search Google Scholar
    • Export Citation
  • Reiter, E. R., 1962: On the nature of clear-air turbulence (CAT). Aerosp. Eng., 21 , 3946.

  • Reiter, E. R., 1969: The nature of clear air turbulence: A review. Clear Air Turbulence and its Detection, Y. H. Pao and A. Goldburg, Eds., Plenum, 7–33.

    • Search Google Scholar
    • Export Citation
  • Reiter, E. R., and H. P. Foltz, 1967: The prediction of clear air turbulence over mountainous terrain. J. Appl. Meteor., 6 , 549556.

  • Reiter, E. R., and W. R. Green, 1972: The Boeing 747 is not immune against clear air turbulence. Meteor. Atmos., 21 , 2734.

  • Schwartz, B., 1996: The quantitative use of PIREPs in developing aviation weather guidance products. Wea. Forecasting, 11 , 372384.

  • Shapiro, M. A., 1980: Turbulent mixing within tropopause folds as a mechanism for the exchange of chemical constituents between the stratosphere and troposphere. J. Atmos. Sci., 37 , 9941004.

    • Search Google Scholar
    • Export Citation
  • Sharman, R., C. Tebaldi, G. Wiener, and J. Wolff, 2006: An integrated approach to mid- and upper-level turbulence forecasting. Wea. Forecasting, 21 , 268287.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 2002: Stratified flow over topography. Environmental Stratified Flows, R. Grimshaw, Ed., Kluwer, 121–159.

  • Steiner, R., 1966: A review of NASA high-altitude clear air turbulence sampling programs. J. Aircr., 3 , 4852.

  • Sutherland, B. R., and W. R. Peltier, 1995: Internal gravity wave emission into the middle atmosphere from a model tropospheric jet. J. Atmos. Sci., 52 , 32143235.

    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., and S. E. Koch, 1987: The synoptic setting and possible energy sources for mesoscale wave disturbances. Mon. Wea. Rev., 115 , 721729.

    • Search Google Scholar
    • Export Citation
  • Vinnichenko, N. K., N. Z. Pinus, S. M. Shmeter, and G. N. Shur, 1980: Turbulence in the Free Atmosphere. Plenum, 310 pp.

  • Wimmers, A. J., and W. Feltz, 2006: Observing clear air turbulence indirectly in satellite imagery. Preprints, 12th Conf. on Aviation, Range, and Aerospace Meteorology, Atlanta, GA, Amer. Meteor. Soc., P8.1.

  • WMO, 1957: Definition of the tropopause. WMO Bull., 6 , 136.

  • Wurtele, M. G., R. D. Sharman, and A. Datta, 1996: Atmospheric lee waves. Annu. Rev. Fluid Mech., 28 , 429476.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 579 311 29
PDF Downloads 544 397 77

Climatology of Upper-Level Turbulence over the Contiguous United States

View More View Less
  • 1 Research Applications Laboratory, National Center for Atmospheric Research,* Boulder, Colorado
Restricted access

Abstract

Climatologies of the regional, seasonal, and temporal distributions of upper-level (18 000–60 000-ft MSL) turbulence over the contiguous United States (CONUS) are constructed using pilot reports (PIREPs) of aircraft turbulence encounters. The PIREP database used contains over two million entries, and encompasses 12 complete years of data, from January 1994 through December 2005. In spite of known variability in pilot reporting practices, it was found that PIREPs are very consistent among themselves for the null and moderate-or-greater (MOG) intensity categories. Air traffic pattern biases were accounted for by considering only statistics of MOG/total report ratios. Over the CONUS, regional maxima are evident in MOG/total ratios over mountainous regions in the west, over the south and southeast, and over the North Atlantic seaboard. Some additional investigations are presented to help to identify possible origins of the turbulence using a smaller time interval of PIREPs in comparison with archived 20-km Rapid Update Cycle (RUC) NWP model analyses, satellite and radar-based cloud-top and cloud-base analyses, and lightning flash data, as well as topography statistics.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Jamie K. Wolff, NCAR/RAL, P.O. Box 3000, Boulder, CO 80307-3000. Email: jwolff@ucar.edu

Abstract

Climatologies of the regional, seasonal, and temporal distributions of upper-level (18 000–60 000-ft MSL) turbulence over the contiguous United States (CONUS) are constructed using pilot reports (PIREPs) of aircraft turbulence encounters. The PIREP database used contains over two million entries, and encompasses 12 complete years of data, from January 1994 through December 2005. In spite of known variability in pilot reporting practices, it was found that PIREPs are very consistent among themselves for the null and moderate-or-greater (MOG) intensity categories. Air traffic pattern biases were accounted for by considering only statistics of MOG/total report ratios. Over the CONUS, regional maxima are evident in MOG/total ratios over mountainous regions in the west, over the south and southeast, and over the North Atlantic seaboard. Some additional investigations are presented to help to identify possible origins of the turbulence using a smaller time interval of PIREPs in comparison with archived 20-km Rapid Update Cycle (RUC) NWP model analyses, satellite and radar-based cloud-top and cloud-base analyses, and lightning flash data, as well as topography statistics.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Jamie K. Wolff, NCAR/RAL, P.O. Box 3000, Boulder, CO 80307-3000. Email: jwolff@ucar.edu

Save