• Amitai, E., X. Llort, and D. Sempere-Torres, 2006: Opportunities and challenges for evaluating precipitation estimates during GPM mission. Meteor. Z., 15 , 551557.

    • Search Google Scholar
    • Export Citation
  • Bell, T. L., and P. K. Kundu, 1996: A study of sampling error of satellite rainfall estimates using averaging of data and a stochastic model. J. Climate, 9 , 12511268.

    • Search Google Scholar
    • Export Citation
  • Bell, T. L., and P. K. Kundu, 2000: Dependence of satellite sampling error on monthly averaged rain rates: Comparison of simple models and recent studies. J. Climate, 13 , 449462.

    • Search Google Scholar
    • Export Citation
  • Bell, T. L., A. Abdullah, R. L. Martin, and G. North, 1990: Sampling errors for satellite-derived tropical rainfall: Monte Carlo study using a space–time stochastic model. J. Geophys. Res., 95 , 21952205.

    • Search Google Scholar
    • Export Citation
  • Bell, T. L., P. K. Kundu, and C. D. Kummerow, 2001: Sampling errors of SSM/I and TRMM rainfall averages: Comparison with error estimates from surface data and a simple model. J. Appl. Meteor., 40 , 938954.

    • Search Google Scholar
    • Export Citation
  • Conner, M. D., and G. W. Petty, 1998: Validation and intercomparison of SSM/I rain-rate retrieval methods over the continental United States. J. Appl. Meteor., 37 , 679700.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., 1997: Special Sensor Microwave Imager derived global rainfall estimates for climatological applications. J. Geophys. Res., 102 , 1671516735.

    • Search Google Scholar
    • Export Citation
  • Fisher, B. L., 2004: Climatological validation of TRMM TMI and PR monthly rain products over Oklahoma. J. Appl. Meteor., 43 , 519535.

  • Fisher, B. L., 2007: Statistical error decomposition of regional-scale climatological precipitation estimates from the Tropical Rainfall Measuring Mission (TRMM). J. Appl. Meteor. Climatol., 46 , 791813.

    • Search Google Scholar
    • Export Citation
  • Ha, E., and G. R. North, 1999: Error analysis for some ground validation designs for satellite observations of precipitation. J. Atmos. Oceanic Technol., 16 , 19491957.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., S. Brodzik, C. Schumacher, S. E. Yuter, and C. R. Williams, 2004: Uncertainties in oceanic radar rain maps at Kwajalein and implications for satellite validation. J. Appl. Meteor., 43 , 11141132.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM Precipitation Radar. J. Appl. Meteor., 39 , 20382052.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., 1998: Beamfilling errors in passive microwave rainfall retrievals. J. Appl. Meteor., 37 , 356369.

  • Kummerow, C., W. S. Olson, and L. Giglio, 1996: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote Sens., 34 , 12131232.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15 , 809817.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40 , 18011820.

    • Search Google Scholar
    • Export Citation
  • Laughlin, C. R., 1981: On the effect of temporal sampling on the observation of mean rainfall. Precipitation Measurements from Space, D. Atlas and O. Thiele, Eds., NASA Publ., D59–D66.

    • Search Google Scholar
    • Export Citation
  • Liao, L., R. Meneghini, and T. Iguchi, 2001: Comparisons of rain rate and reflectivity factor derived from the TRMM precipitation radar and the WSR-88D over the Melbourne, Florida, site. J. Atmos. Oceanic Technol., 18 , 19591974.

    • Search Google Scholar
    • Export Citation
  • Marks, D. A., D. B. Wolff, D. S. Silberstein, J. L. Pippitt, and J. Wang, 2005: Improving radar rainfall estimates at Kwajalein Atoll, RMI through relative calibration adjustment. Preprints, 32nd Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., 3R.2. [Available online at http://ams.confex.com/ams/pdfpapers/96535.pdf.].

  • McCollum, J. R., and R. R. Ferraro, 2003: Next generation of NOAA/NESDIS TMI, SSM/I, and AMSR-E microwave land rainfall algorithms. J. Geophys. Res., 108 .8382, doi:10.1029/2001JD001512.

    • Search Google Scholar
    • Export Citation
  • McCollum, J. R., and R. R. Ferraro, 2005: Microwave rainfall estimation over coasts. J. Atmos. Oceanic Technol., 22 , 497512.

  • Meneghini, R., T. Iguchi, T. Kozu, L. Liao, K. Okamoto, J. A. Jones, and J. Kwiatkowski, 2000: Use of the surface reference technique for path attenuation estimates from the TRMM Precipitation Radar. J. Appl. Meteor., 39 , 20532070.

    • Search Google Scholar
    • Export Citation
  • Oki, R., and A. Sumi, 1994: Sampling simulation of TRMM rainfall estimation using radar–AMeDAS composites. J. Appl. Meteor., 33 , 15971608.

    • Search Google Scholar
    • Export Citation
  • Olson, W. S., and Coauthors, 2006: Precipitation and latent heating distributions from satellite passive microwave radiometry. Part I: Improved method and uncertainty estimates. J. Appl. Meteor. Climatol., 45 , 702720.

    • Search Google Scholar
    • Export Citation
  • Shin, K., and G. R. North, 1988: Sampling error study for rainfall estimate by satellite using a stochastic model. J. Appl. Meteor., 27 , 12181231.

    • Search Google Scholar
    • Export Citation
  • Silberstein, D. S., D. B. Wolff, D. A. Marks, and J. L. Pippitt, 2008: Ground clutter as a monitor of radar stability at Kwajalein, RMI. J. Atmos. Oceanic Technol., in press.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., R. F. Adler, and G. R. North, 1988: A proposed Tropical Rainfall Measuring Mission (TRMM) satellite. Bull. Amer. Meteor. Soc., 69 , 278294.

    • Search Google Scholar
    • Export Citation
  • Spencer, R., W. H. Goodman, and R. E. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6 , 254273.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., T. L. Bell, Y. Zhang, and E. F. Wood, 2003: Comparison of two methods of sampling-related uncertainty of satellite rainfall estimates based on a large radar dataset. J. Climate, 16 , 37593778.

    • Search Google Scholar
    • Export Citation
  • Stocker, E. F., J. Kwiatkowski, and O. Kelley, 2001: Gridded hourly text products: A TRMM data reduction approach. Proc. 2001 Int. Geoscience and Remote Sensing Symposium, Sydney, Australia, IEEE, 658–660.

  • Tao, W-K., and J. Simpson, 1993: Goddard Cumulus Ensemble Model. Part I: Model description. Terr. Atmos. Oceanic Sci., 4 , 3572.

  • Thiele, O., 1988: Validating space observations of rainfall. Tropical Rainfall Measurements, J. S. Theon and N. Fugono, Eds., A. Deepak, 415–423.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T. T., A. Chang, and L. Chiu, 1991: Retrieval of monthly rainfall indices from microwave radiometric measurements using probability distribution function. J. Atmos. Oceanic Technol., 8 , 118136.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T., C. Kummerow, and R. Ferraro, 2003: Rainfall algorithms for AMSR-E. IEEE Trans. Geosci. Remote Sens., 41 , 204214.

  • Wolff, D. B., D. A. Marks, E. Amitai, D. S. Silberstein, B. L. Fisher, A. Tokay, J. Wang, and J. L. Pippitt, 2005: Ground validation for the Tropical Rainfall Measuring Mission (TRMM). J. Atmos. Oceanic Technol., 22 , 365380.

    • Search Google Scholar
    • Export Citation
  • Yuter, S., M. Miller, J. Stout, R. Wood, J. Kwiatkowski, D. Horn, and C. Spooner, 2006: Remaining challenges in satellite precipitation estimation for the Tropical Rainfall Measuring Mission. Preprints, Fourth European Conf. on Radar in Meteorology and Hydrology, Barcelona, Spain, Copernicus Gesellschaft mbH and European Meteorological Society, 18–22. [Available online at http://www4.ncsu.edu/~seyuter/pdfs/ERAD06TRMM00163.pdf.].

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 182 116 39
PDF Downloads 77 34 0

Comparisons of Instantaneous TRMM Ground Validation and Satellite Rain-Rate Estimates at Different Spatial Scales

View More View Less
  • 1 Science Systems and Applications, Inc., Lanham, and NASA Goddard Space Flight Center, Greenbelt, Maryland
Restricted access

Abstract

This study provides a comprehensive intercomparison of instantaneous rain rates observed by the two rain sensors aboard the Tropical Rainfall Measuring Mission (TRMM) satellite with ground data from two regional sites established for long-term ground validation: Kwajalein Atoll and Melbourne, Florida. The satellite rain algorithms utilize remote observations of precipitation collected by the TRMM Microwave Imager (TMI) and the Precipitation Radar (PR) aboard the TRMM satellite. Three standard level II rain products are generated from operational applications of the TMI, PR, and combined (COM) rain algorithms using rain information collected from the TMI and the PR along the orbital track of the TRMM satellite. In the first part of the study, 0.5° × 0.5° instantaneous rain rates obtained from the TRMM 3G68 product were analyzed and compared to instantaneous Ground Validation (GV) program rain rates gridded at a scale of 0.5° × 0.5°. In the second part of the study, TMI, PR, COM, and GV rain rates were spatiotemporally matched and averaged at the scale of the TMI footprint (∼150 km2). This study covered a 6-yr period (1999–2004) and consisted of over 50 000 footprints for each GV site. In the first analysis, the results showed that all of the respective rain-rate estimates agree well, with some exceptions. The more salient differences were associated with heavy rain events in which one or more of the algorithms failed to properly retrieve these extreme events. Also, it appears that there is a preferred mode of precipitation for TMI rain rates at or near 2 mm h−1 over the ocean. This mode was noted over ocean areas of Kwajalein and Melbourne and has been observed in TRMM tropical–global ocean areas as well.

Corresponding author address: David B. Wolff, NASA/GSFC, Code 613.1, Greenbelt, MD 20771. Email: wolff@radar.gsfc.nasa.gov

Abstract

This study provides a comprehensive intercomparison of instantaneous rain rates observed by the two rain sensors aboard the Tropical Rainfall Measuring Mission (TRMM) satellite with ground data from two regional sites established for long-term ground validation: Kwajalein Atoll and Melbourne, Florida. The satellite rain algorithms utilize remote observations of precipitation collected by the TRMM Microwave Imager (TMI) and the Precipitation Radar (PR) aboard the TRMM satellite. Three standard level II rain products are generated from operational applications of the TMI, PR, and combined (COM) rain algorithms using rain information collected from the TMI and the PR along the orbital track of the TRMM satellite. In the first part of the study, 0.5° × 0.5° instantaneous rain rates obtained from the TRMM 3G68 product were analyzed and compared to instantaneous Ground Validation (GV) program rain rates gridded at a scale of 0.5° × 0.5°. In the second part of the study, TMI, PR, COM, and GV rain rates were spatiotemporally matched and averaged at the scale of the TMI footprint (∼150 km2). This study covered a 6-yr period (1999–2004) and consisted of over 50 000 footprints for each GV site. In the first analysis, the results showed that all of the respective rain-rate estimates agree well, with some exceptions. The more salient differences were associated with heavy rain events in which one or more of the algorithms failed to properly retrieve these extreme events. Also, it appears that there is a preferred mode of precipitation for TMI rain rates at or near 2 mm h−1 over the ocean. This mode was noted over ocean areas of Kwajalein and Melbourne and has been observed in TRMM tropical–global ocean areas as well.

Corresponding author address: David B. Wolff, NASA/GSFC, Code 613.1, Greenbelt, MD 20771. Email: wolff@radar.gsfc.nasa.gov

Save