A Spatial Analysis of Radar Reflectivity Regions within Hurricane Charley (2004)

Corene J. Matyas Department of Geography, University of Florida, Gainesville, Florida

Search for other papers by Corene J. Matyas in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Regions of 35-dBZ radar reflectivity returns are examined within a landfalling hurricane to determine whether these regions are composed of stratiform, convective, or transition-type precipitation. After calculating spatial attributes of the reflectivity regions such as elongation and edge roughness within a GIS, discriminant analysis is performed to determine whether the 35-dBZ regions are more similar to 40-dBZ regions of convective precipitation or to 30-dBZ regions of stratiform precipitation. Results show that within the outer region rainbands of Hurricane Charley (2004) a sharp horizontal reflectivity gradient exists, indicating that 35-dBZ regions are similar in shape to adjacent convective regions of 40-dBZ reflectivity values. Within the interior region, the 35-dBZ regions are identified as transition regions similar to those found within mesoscale convective complexes rather than being strictly stratiform or convective in nature. The rain rates produced by the reflectivity regions are examined using rain gauge and radar estimates. In 32% of cases, the 35-dBZ regions produced rain rates in excess of 10 mm h−1, exceeding both the radar-estimated rain rates and the 8.4 mm h−1 rain rate ascribed to 35-dBZ regions by the tropical Z–R relationship. Thus, 35-dBZ regions surrounding the convective cores of additional landfalling TCs should be examined to determine whether they also represent transition-type rainfall regions capable of producing convective rainfall rates exceeding 10 mm h−1.

Corresponding author address: Corene J. Matyas, 3141 Turlington Hall, University of Florida, Gainesville, FL 32611. Email: matyas@ufl.edu

Abstract

Regions of 35-dBZ radar reflectivity returns are examined within a landfalling hurricane to determine whether these regions are composed of stratiform, convective, or transition-type precipitation. After calculating spatial attributes of the reflectivity regions such as elongation and edge roughness within a GIS, discriminant analysis is performed to determine whether the 35-dBZ regions are more similar to 40-dBZ regions of convective precipitation or to 30-dBZ regions of stratiform precipitation. Results show that within the outer region rainbands of Hurricane Charley (2004) a sharp horizontal reflectivity gradient exists, indicating that 35-dBZ regions are similar in shape to adjacent convective regions of 40-dBZ reflectivity values. Within the interior region, the 35-dBZ regions are identified as transition regions similar to those found within mesoscale convective complexes rather than being strictly stratiform or convective in nature. The rain rates produced by the reflectivity regions are examined using rain gauge and radar estimates. In 32% of cases, the 35-dBZ regions produced rain rates in excess of 10 mm h−1, exceeding both the radar-estimated rain rates and the 8.4 mm h−1 rain rate ascribed to 35-dBZ regions by the tropical Z–R relationship. Thus, 35-dBZ regions surrounding the convective cores of additional landfalling TCs should be examined to determine whether they also represent transition-type rainfall regions capable of producing convective rainfall rates exceeding 10 mm h−1.

Corresponding author address: Corene J. Matyas, 3141 Turlington Hall, University of Florida, Gainesville, FL 32611. Email: matyas@ufl.edu

Save
  • Anagnostou, E. N., 2004: A convective/stratiform precipitation classification algorithm for volume scanning weather radar observations. Meteor. Appl., 11 , 291300.

    • Search Google Scholar
    • Export Citation
  • Ansari, S., and S. Del Greco, 2005: GIS tools for visualization and analysis of NEXRAD radar (WSR-88D) archived data at the National Climatic Data Center. Preprints, 21st Int. Conf. on Interactive Information Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, San Diego, CA, Amer. Meteor. Soc., J9.6. [Available online at http://ams.confex.com/ams/pdfpapers/84729.pdf.].

    • Search Google Scholar
    • Export Citation
  • Atlas, D., C. W. Ulbrich, F. D. Marks, E. Amitai, and C. R. Williams, 1999: Systematic variation of drop size and radar-rainfall relations. J. Geophys. Res., 104 , 61556169.

    • Search Google Scholar
    • Export Citation
  • Austin, P. M., 1987: Relation between measured radar reflectivity and surface rainfall. Mon. Wea. Rev., 115 , 10531071.

  • Baeck, M. L., and J. A. Smith, 1998: Rainfall estimation by the WSR-88D for heavy rainfall events. Wea. Forecasting, 13 , 416436.

  • Barnes, G. M., and G. J. Stossmeister, 1986: The structure and decay of a rainband in Hurricane Irene (1981). Mon. Wea. Rev., 114 , 25902601.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., E. Zipser, D. Jorgensen, and F. D. Marks, 1983: Mesoscale and convective structure of a hurricane rainband. J. Atmos. Sci., 40 , 21252137.

    • Search Google Scholar
    • Export Citation
  • Beyer, H. L., cited 2004: Hawth’s analysis tools for ArcGIS. 3.26. [Available online at http://www.spatialecology.com/htools.].

  • Biggerstaff, M. I., and S. A. Listemaa, 2000: An improved scheme for convective/stratiform echo classification using radar reflectivity. J. Appl. Meteor., 39 , 21292150.

    • Search Google Scholar
    • Export Citation
  • Black, P. G., H. V. Senn, and C. L. Courtright, 1972: Airborne radar observations of eye configuration changes, bright band distribution, and precipitation tilt during 1969 multiple seeding experiments in Hurricane Debbie. Mon. Wea. Rev., 100 , 208217.

    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., and M. L. Black, 1989: Temporal and spatial variations of rainfall near the centers of two tropical cyclones. Mon. Wea. Rev., 117 , 22042218.

    • Search Google Scholar
    • Export Citation
  • Chen, J. Y., H. Uyeda, and D. I. Lee, 2003: A method using radar reflectivity data for the objective classification of precipitation during the Baiu season. J. Meteor. Soc. Japan, 81 , 229249.

    • Search Google Scholar
    • Export Citation
  • Chumchean, S., A. Sharma, and A. Seed, 2003: Radar rainfall error variance and its impact on radar rainfall calibration. Phys. Chem. Earth, 28 , 2739.

    • Search Google Scholar
    • Export Citation
  • Churchill, D. D., and R. A. Houze, 1984: Development and structure of winter monsoon cloud clusters on 10 December 1978. J. Atmos. Sci., 41 , 933960.

    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., 2002: Predicting hurricane landfall precipitation: Optimistic and pessimistic views from the symposium on precipitation extremes. Bull. Amer. Meteor. Soc., 83 , 13331339.

    • Search Google Scholar
    • Export Citation
  • Environmental Systems Research Institute, cited 2006: ArcGIS. 9.2. [Available online at http://www.esri.com/software/arcgis/index.html.].

  • Franklin, J. L., R. J. Pasch, L. A. Avila, J. L. Beven, M. B. Lawrence, S. R. Stewart, and E. S. Blake, 2006: Atlantic hurricane season of 2004. Mon. Wea. Rev., 134 , 9811025.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., G. M. Heymsfield, L. Tian, J. B. Halverson, A. Guillory, and M. I. Mejia, 2000: Hurricane Georges’s landfall in the Dominican Republic: Detailed airborne Doppler radar imagery. Bull. Amer. Meteor. Soc., 81 , 9991018.

    • Search Google Scholar
    • Export Citation
  • Gilbert, S. C., and N. E. LaSeur, 1957: A study of the rainfall patterns and some related features in a dissipating hurricane. J. Meteor., 14 , 1827.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Jorgensen, D. P., 1984: Mesoscale and convective-scale characteristics of mature hurricanes. Part I: General observations by research aircraft. J. Atmos. Sci., 41 , 12681285.

    • Search Google Scholar
    • Export Citation
  • Klazura, G. E., and D. A. Imy, 1993: A description of the initial set of analysis products available from the NEXRAD WSR-88D system. Bull. Amer. Meteor. Soc., 74 , 12931311.

    • Search Google Scholar
    • Export Citation
  • Larson, L. W., and E. L. Peck, 1974: Accuracy of precipitation measurements for hydrologic modeling. Water Resour. Res., 10 , 857863.

  • MacEachren, A. M., 1985: Compactness of geographic shape: Comparison and evaluation of measures. Geogr. Ann., 67B , 5367.

  • Marks, F. D., 1985: Evolution of the structure of precipitation in Hurricane Allen (1980). Mon. Wea. Rev., 113 , 909930.

  • Marshall, J., and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5 , 165166.

  • Maynard, R. H., 1945: Radar and weather. J. Meteor., 2 , 214226.

  • Medlin, J. M., S. K. Kimball, and K. G. Blackwell, 2007: Radar and rain gauge analysis of the extreme rainfall during Hurricane Danny’s (1997) landfall. Mon. Wea. Rev., 135 , 18691888.

    • Search Google Scholar
    • Export Citation
  • Miller, B. I., 1958: Rainfall rates in Florida hurricanes. Mon. Wea. Rev., 86 , 258264.

  • OFCM, 2006: Part C: WSR-88D products and algorithms. Federal Meteorological Handbook, No. 11: Doppler Radar Meteorological Observations, Office of the Federal Coordinator for Meteorological Services and Supporting Research, FCM-H11C-2006, 2-1–2-208.

    • Search Google Scholar
    • Export Citation
  • Parrish, J. R., R. W. Burpee, F. D. Marks, and R. Grebe, 1982: Rainfall patterns observed by digitized radar during the landfall of Hurricane Frederic (1979). Mon. Wea. Rev., 110 , 19331944.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1987: Changes in the low-level kinematic and thermodynamic structure of Hurricane Alicia (1983) at landfall. Mon. Wea. Rev., 115 , 7599.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1990: Boundary-layer structure and dynamics in outer hurricane rainbands. Part I: Mesoscale rainfall and kinematic structure. Mon. Wea. Rev., 118 , 891917.

    • Search Google Scholar
    • Export Citation
  • Rigo, T., and M. C. Llasat, 2004: A methodology for the classification of convective structures using meteorological radar: Application to heavy rainfall events on the Mediterranean coast of the Iberian Peninsula. Nat. Hazards Earth Syst. Sci., 4 , 5968.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., D. B. Wolff, and D. Atlas, 1993: General probability-matched relations between radar reflectivity and rain rate. J. Appl. Meteor., 32 , 5072.

    • Search Google Scholar
    • Export Citation
  • Ryan, B. F., G. M. Barnes, and E. J. Zipser, 1992: A wide rainband in a developing tropical cyclone. Mon. Wea. Rev., 120 , 431447.

  • Senn, H. V., and H. W. Hiser, 1959: On the origin of hurricane spiral rain bands. J. Meteor., 16 , 419426.

  • Smith, T. M., K. L. Elmore, and S. A. Dulin, 2004: A damaging downburst prediction and detection algorithm for the WSR-88D. Wea. Forecasting, 19 , 240250.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., R. A. Houze, and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34 , 19782007.

    • Search Google Scholar
    • Export Citation
  • Tabachnick, K. E., and L. S. Fidell, 2001: Discriminant function analysis. Using Multivariate Statistics, R. Pascal, Ed., Allyn and Bacon, 456–516.

    • Search Google Scholar
    • Export Citation
  • Thornes, J., 2005: Special issue on the use of GIS in climatology and meteorology. Meteor. Appl., 12 , iiii.

  • Tokay, A., D. A. Short, C. R. Williams, W. L. Ecklund, and K. S. Gage, 1999: Tropical rainfall associated with convective and stratiform clouds: Intercomparison of disdrometer and profiler measurements. J. Appl. Meteor., 38 , 302320.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., and D. Atlas, 2002: On the separation of tropical convective and stratiform rains. J. Appl. Meteor., 41 , 188195.

  • Ulbrich, C. W., and L. G. Lee, 2002: Rainfall characteristics associated with the remnants of Tropical Storm Helene in upstate South Carolina. Wea. Forecasting, 17 , 12571267.

    • Search Google Scholar
    • Export Citation
  • Vieux, B. E., and P. B. Bedient, 1998: Estimation of rainfall for flood prediction from WSR-88D reflectivity: A case study, 17–18 October 1994. Wea. Forecasting, 13 , 407415.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, 467 pp.

  • Willoughby, H. E., F. D. Marks, and R. J. Feinberg, 1984: Stationary and moving convective bands in hurricanes. J. Atmos. Sci., 41 , 31893211.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and E. A. Brandes, 1979: Radar measurement of rainfall—A summary. Bull. Amer. Meteor. Soc., 60 , 10481058.

  • Yuan, M., 2005: Beyond mapping in GIS applications to environmental analysis. Bull. Amer. Meteor. Soc., 86 , 169170.

  • Yuter, S. E., and R. A. Houze, 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II. Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123 , 19411963.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze, 1997: Measurements of raindrop size distributions over the Pacific warm pool and implications for Z–R relations. J. Appl. Meteor., 36 , 847867.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 187 71 3
PDF Downloads 107 36 2