• Amitai, E., 2000: Systematic variation of observed radar reflectivity–rainfall rate relations in the tropics. J. Appl. Meteor., 39 , 21982208.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., 1964: Advances in radar meteorology. Advances in Geophysics, Vol. 10, Academic Press, 317–478.

  • Atlas, D., , and C. Chmela, 1957: Physical–synoptic variations of raindrop size parameters. Proc. Sixth Weather Radar Conf., Cambridge, MA, Amer. Meteor. Soc., 21–29.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., , R. C. Srivastava, , and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys., 11 , 135.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., , C. W. Ulbrich, , F. D. Marks Jr., , E. Amitai, , and C. R. Williams, 1999: Systematic variation of drop size and radar–rainfall relations. J. Geophys. Res., 104 , (D6). 61556169.

    • Search Google Scholar
    • Export Citation
  • Barros, A. P., , and D. P. Lettenmaier, 1993: Dynamic modeling of the spatial distribution of precipitation in remote mountainous areas. Mon. Wea. Rev., 121 , 11951214.

    • Search Google Scholar
    • Export Citation
  • Barros, A. P., , O. P. Prat, , P. Shrestha, , F. Y. Testik, , and L. F. Bliven, 2008: Revisiting Low and List (1982): Evaluation of raindrop collision parameterizations using laboratory observations and modeling. J. Atmos. Sci., 65 , 29832993.

    • Search Google Scholar
    • Export Citation
  • Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago Press, 324 pp.

  • Best, A. C., 1950: Empirical formulae for the terminal velocity of water drops falling thought the atmosphere. Quart. J. Roy. Meteor. Soc., 76 , 302311.

    • Search Google Scholar
    • Export Citation
  • Blanchard, D. C., 1953: Raindrop size-distribution in Hawaiian rains. J. Meteor., 10 , 457473.

  • Bringi, V. N., , T. Tang, , and V. Chandrasekar, 2004: Evolution of a new polarimetrically based ZR relation. J. Atmos. Oceanic Technol., 21 , 612623.

    • Search Google Scholar
    • Export Citation
  • Campos, E., , and I. Zawadzki, 2000: Instrumental uncertainties in ZR relations. J. Appl. Meteor., 39 , 10881102.

  • Carbone, R. E., , and L. D. Nelson, 1978: The evolution of raindrop spectra in warm-based convective storms as observed and numerically modeled. J. Atmos. Sci., 35 , 23022314.

    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., , and W. F. Krajewski, 1999: Radar–rain gauge comparisons under observational uncertainties. J. Appl. Meteor., 38 , 15191525.

    • Search Google Scholar
    • Export Citation
  • Fujiwara, M., 1965: Raindrop size distribution from individual storms. J. Atmos. Sci., 22 , 585591.

  • Gorgucci, E., , V. Chandrasekar, , and L. Baldini, 2006: Rainfall estimation from X-band dual polarization radar using reflectivity and differential reflectivity. Atmos. Res., 82 , 164172.

    • Search Google Scholar
    • Export Citation
  • Guzel, H., , and A. P. Barros, 2001: Using acoustic emission testing to monitor kinetic energy of raindrop and raindrop and raindrop splash erosion. Soil Erosion for the 21st Century, J. C. Ascough II and D. C. Flanagan, Eds., American Society of Agricultural and Biological Engineers, 525–528.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., , T. Kozu, , R. Meneghini, , J. Awaka, , and K. Okamato, 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39 , 20382052.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., , and T. M. Blackman, 2002: The need to represent raindrop size spectra as normalized gamma distributions for the interpretation of polarization radar observations. J. Appl. Meteor., 41 , 286297.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., , and A. B. Kostinski, 2001a: Reconsideration of the physical and empirical origins of ZR relations in radar meteorology. Quart. J. Roy. Meteor. Soc., 127 , 517538.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., , and A. B. Kostinski, 2001b: What is a raindrop size distribution? Bull. Amer. Meteor. Soc., 82 , 11691177.

  • Jones, D. M. A., 1956: Rainfall drop-size distribution and radar reflectivity. Illinois State Water Survey Research Rep. 6, 20 pp.

  • Lang, J. L., , and A. P. Barros, 2002: An investigation of the onsets of the 1999 and 2000 monsoons in central Nepal. Mon. Wea. Rev., 130 , 12991316.

    • Search Google Scholar
    • Export Citation
  • List, R., 1988: A linear radar reflectivity–rain rate relationship for steady tropical rain. J. Atmos. Sci., 45 , 35643572.

  • Marshall, J. S., , and W. Mc K. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5 , 165166.

  • Marshall, J. S., , R. C. Langille, , and W. Mc K. Palmer, 1947: Measurement of rainfall by radar. J. Meteor., 4 , 186192.

  • McFarquhar, G. M., 2004: The effect of raindrop clustering on collision-induced break-up of raindrops. Quart. J. Roy. Meteor. Soc., 130 , 21692190.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., , and R. List, 1991: The raindrop mean free path and collision rate dependence on rain rate for three-peak equilibrium and Marshall–Palmer distributions. J. Atmos. Sci., 48 , 19992003.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., , T. Iguchi, , T. Kozu, , L. Liao, , K. Okamato, , J. A. Jones, , and J. Kwiatkowski, 2000: Use of the surface reference technique for path attenuation estimates from the TRMM precipitation radar. J. Appl. Meteor., 39 , 20532070.

    • Search Google Scholar
    • Export Citation
  • Prat, O. P., , and A. P. Barros, 2007a: A robust numerical solution of the stochastic collection–breakup equation for warm rain. J. Appl. Meteor. Climatol., 46 , 14801497. Corrigendum, 46, 2014.

    • Search Google Scholar
    • Export Citation
  • Prat, O. P., , and A. P. Barros, 2007b: Exploring the use of a column model for the characterization of microphysical processes in warm rain: Results from a homogeneous rainshaft model. Adv. Geosci., 10 , 145152.

    • Search Google Scholar
    • Export Citation
  • Prat, O. P., , A. P. Barros, , and C. R. Williams, 2008: An intercomparison of model simulations and VPR estimates of the vertical structure of warm stratiform rainfall during TWP-ICE. J. Appl. Meteor. Climatol., 47 , 27972815.

    • Search Google Scholar
    • Export Citation
  • Raghavan, S., 2003: Radar Meteorology. Kluwer Academic, 549 pp.

  • Robertson, F. R., , D. E. Fitzjarrald, , and C. D. Kummerow, 2003: Effects of uncertainty in TRMM precipitation radar path integrated attenuation on interannual variations of tropical oceanic rainfall. Geophys. Res. Lett., 30 , 1180. doi:10.1029/2002GL016416.

    • Search Google Scholar
    • Export Citation
  • Smith, P. L., , Z. Liu, , and J. Joss, 1993: A study of sampling-variability effects in raindrop size observations. J. Appl. Meteor., 32 , 12591269.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., , and J. A. Smith, 2000: Reflectivity, rain rate, and kinetic energy flux relationships based on raindrop spectra. J. Appl. Meteor., 39 , 19231940.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., , and J. A. Smith, 2004: Scale dependence of radar–rainfall rates—An assessment based on raindrop spectra. J. Hydrometeor., 5 , 11711180.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., , J. A. Smith, , and R. Uijlenhoet, 2004: A microphysical interpretation of radar reflectivity–rain rate relationships. J. Atmos. Sci., 61 , 11141131.

    • Search Google Scholar
    • Export Citation
  • Stout, G. E., , and E. A. Mueller, 1968: Survey of relationships between rainfall rate and radar reflectivity in the measurement of precipitation. J. Appl. Meteor., 7 , 465474.

    • Search Google Scholar
    • Export Citation
  • Testud, J., , S. Oury, , R. A. Black, , P. Amayenc, , and X. Dou, 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40 , 11181140.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., , and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform and convective clouds. J. Appl. Meteor., 35 , 355371.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., , A. Kruger, , and W. F. Krajewski, 2001: Comparison of drop size distribution measurements by impact and optical disdrometers. J. Appl. Meteor., 40 , 20832097.

    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., , and J. H. Pomeroy, 2001: Raindrop size distributions and radar reflectivity–rain rate relationships for radar hydrology. Hydrol. Earth Syst. Sci., 5 , 615627.

    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., , J. A. Smith, , and M. Steiner, 2003: The microphysical structure of extreme precipitation as inferred from ground-based raindrop spectra. J. Atmos. Sci., 60 , 12201238.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22 , 17641775.

    • Search Google Scholar
    • Export Citation
  • Willis, P. T., 1984: Functional fits to some observed drop size distributions and parameterization of rain. J. Atmos. Sci., 41 , 16481661.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., , and E. A. Brandes, 1979: Radar measurement of rainfall—A summary. Bull. Amer. Meteor. Soc., 60 , 10481058.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 73 73 13
PDF Downloads 53 53 9

Exploring the Transient Behavior of ZR Relationships: Implications for Radar Rainfall Estimation

View More View Less
  • 1 Civil and Environmental Engineering Department, Pratt School of Engineering, Duke University, Durham, North Carolina
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The objective of this study is to characterize the signature of dynamical microphysical processes on reflectivity–rainfall (ZR) relationships used for radar rainfall estimation. For this purpose, a bin model with explicit microphysics was used to perform a sensitivity analysis of the shape parameters of the drop size distribution (DSD) as a function of time and rainfall regime. Simulations show that coalescence is the dominant microphysical process for low to moderate rain intensity regimes (R < 20 mm h−1) and that the rain rate in this regime is strongly dependent on the spectral properties of the DSD (i.e., the shape). The time to equilibrium for light rainfall is at least twice as long as in the case of heavy rainfall (1 h for stratiform vis-à-vis 30 min for thunderstorms). For high-intensity rainfall (R > 20 mm h−1), collision–breakup dynamics dominate the evolution of the raindrop spectra. The time-dependent ZR relationships produced by the model converge to a universal ZR relationship for heavy intensity rainfall (A = 1257; b ∼ 1) centered on the region of ZR space defined by the ensemble of over 100 empirical ZR relationships. Given the intrinsically transient nature of the DSD for light rainfall, it is proposed that the vertical raindrop spectra and corresponding rain rates should be modeled explicitly by a microphysical model. A demonstration using a multicolumn simulation of a Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) overpass over Darwin for a stratiform event during the Tropical Warm Pool–International Cloud Experiment (TWP-ICE) is presented.

Corresponding author address: Dr. Ana P. Barros, Duke University, Box 90287, 2457 CIEMAS Fitzpatrick Bldg., Durham, NC 27708. Email: barros@duke.edu

Abstract

The objective of this study is to characterize the signature of dynamical microphysical processes on reflectivity–rainfall (ZR) relationships used for radar rainfall estimation. For this purpose, a bin model with explicit microphysics was used to perform a sensitivity analysis of the shape parameters of the drop size distribution (DSD) as a function of time and rainfall regime. Simulations show that coalescence is the dominant microphysical process for low to moderate rain intensity regimes (R < 20 mm h−1) and that the rain rate in this regime is strongly dependent on the spectral properties of the DSD (i.e., the shape). The time to equilibrium for light rainfall is at least twice as long as in the case of heavy rainfall (1 h for stratiform vis-à-vis 30 min for thunderstorms). For high-intensity rainfall (R > 20 mm h−1), collision–breakup dynamics dominate the evolution of the raindrop spectra. The time-dependent ZR relationships produced by the model converge to a universal ZR relationship for heavy intensity rainfall (A = 1257; b ∼ 1) centered on the region of ZR space defined by the ensemble of over 100 empirical ZR relationships. Given the intrinsically transient nature of the DSD for light rainfall, it is proposed that the vertical raindrop spectra and corresponding rain rates should be modeled explicitly by a microphysical model. A demonstration using a multicolumn simulation of a Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) overpass over Darwin for a stratiform event during the Tropical Warm Pool–International Cloud Experiment (TWP-ICE) is presented.

Corresponding author address: Dr. Ana P. Barros, Duke University, Box 90287, 2457 CIEMAS Fitzpatrick Bldg., Durham, NC 27708. Email: barros@duke.edu

Save