• Aires, F., , A. Chédin, , N. A. Scott, , and W. B. Rossow, 2002: A regularized neural net for retrieval of atmospheric and surface temperature with the IASI instrument. J. Appl. Meteor., 41 , 144159.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., , and C. W. Ulbrich, 1977: Path- and area-integrated rainfall measurement by microwave attenuation in the 1–3 cm band. J. Appl. Meteor., 16 , 13221331.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., , R. Srivastava, , and R. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. Space Phys., 11 , 135.

    • Search Google Scholar
    • Export Citation
  • Austin, P. M., 1987: Relation between measured radar reflectivity and surface rainfall. Mon. Wea. Rev., 115 , 10531070.

  • Aydin, K., , Y. Zhao, , and T. Seliga, 1990: A differential reflectivity radar hail measurement technique: Observations during the Denver hailstorm of 13 June 1984. J. Atmos. Oceanic Technol., 7 , 104113.

    • Search Google Scholar
    • Export Citation
  • Battiti, R., 1989: Accelerated backpropagation learning: Two optimization methods. Complex Syst., 3 , 331342.

  • Brandes, E. A., , G. Zhang, , and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41 , 674685.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., , and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

  • Bringi, V. N., , G. J. Huang, , V. Chandrasekar, , and E. Gorgucci, 2002: A methodology for estimating the parameters of a gamma raindrop size distribution model from polarimetric radar data: Application to a squall-line event from the TRMM/Brazil campaign. J. Atmos. Oceanic Technol., 19 , 633645.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., , T. Tang, , and V. Chandrasekar, 2004: Evaluation of a new polarimetrically based ZR relation. J. Atmos. Oceanic Technol., 21 , 612623.

    • Search Google Scholar
    • Export Citation
  • Brock, F. V., , K. C. Crawford, , R. L. Elliott, , G. W. Cuperus, , S. J. Stadler, , H. L. Johnson, , and M. D. Eilts, 1995: The Oklahoma Mesonet: A technical overview. J. Atmos. Oceanic Technol., 12 , 519.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., , V. Bringi, , N. Balakrishnan, , and D. Zrnić, 1990: Error structure of multiparameter radar and surface measurements of rainfall. Part III: Specific differential phase. J. Atmos. Oceanic Technol., 7 , 621629.

    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., 2003: Local random errors in tipping-bucket rain gauge measurements. J. Atmos. Oceanic Technol., 20 , 752759.

  • Doviak, R. J., , and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. Academic Press, 562 pp.

  • Duchon, C. E., , and G. R. Essenberg, 2001: Comparative rainfall observations from pit and aboveground rain gauges with and without wind shields. Water Resour. Res., 37 , 32533263.

    • Search Google Scholar
    • Export Citation
  • Fiebrich, C. A., , D. L. Grimsley, , R. A. McPherson, , K. A. Kesler, , and G. R. Essenberg, 2006: The value of routine site visits in managing and maintaining quality data from the Oklahoma mesonet. J. Atmos. Oceanic Technol., 23 , 406416.

    • Search Google Scholar
    • Export Citation
  • Fulton, R. A., , J. P. Breidenbach, , D. J. Seo, , D. A. Miller, , and T. O’Bannon, 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13 , 377395.

    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., , and A. V. Ryzhkov, 2005: Calibration of dual-polarization radar in the presence of partial beam blockage. J. Atmos. Oceanic Technol., 22 , 11561166.

    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., , and A. V. Ryzhkov, 2008: Estimation of rainfall based on the results of polarimetric echo classification. J. Appl. Meteor. Climatol., 47 , 24452462.

    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., , V. Chandrasekar, , V. N. Bringi, , and G. Scarchilli, 2002: Estimation of raindrop size distribution parameters from polarimetric radar measurements. J. Atmos. Sci., 59 , 23732384.

    • Search Google Scholar
    • Export Citation
  • Hagan, M. T., , H. B. Demuth, , and M. H. Beale, 1996: Neural Network Design. PWS-Kent, 730 pp.

  • Haykin, S., 1995: Neural Networks: A Comprehensive Foundation. Mcmillan College, 336 pp.

  • Heinselman, P. L., , and A. V. Ryzhkov, 2006: Validation of polarimetric hail detection. Wea. Forecasting, 21 , 839850.

  • Liu, H., , and V. Chandrasekar, 2000: Classification of hydrometeors based on polarimetric radar measurements: Developments of fuzzy logic and neuro-fuzzy systems, and in situ verification. J. Atmos. Oceanic Technol., 17 , 140164.

    • Search Google Scholar
    • Export Citation
  • Marzano, F. S., , D. Scaranari, , and G. Vulpiani, 2007: Supervised fuzzy-logic classification of hydrometeors using C-band weather radars. IEEE Trans., 45 , 37843799.

    • Search Google Scholar
    • Export Citation
  • McPherson, R. A., and Coauthors, 2007: Statewide monitoring of the mesoscale environment: A technical update on the Oklahoma Mesonet. J. Atmos. Oceanic Technol., 24 , 301321.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., 2000: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt., 39 , 10261031.

    • Search Google Scholar
    • Export Citation
  • Rumelhart, D. E., , G. E. Hinton, , and R. J. Williams, 1986: Learning representations by backpropagating errors. Nature, 323 , 533536.

  • Ryzhkov, A. V., 2007: The impact of beam broadening on the quality of radar polarimetric data. J. Atmos. Oceanic Technol., 24 , 729744.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., , and D. S. Zrnić, 1995: Precipitation and attenuation measurements at a 10-cm wavelength. J. Appl. Meteor., 34 , 21212134.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., , and D. S. Zrnić, 1996: Assessment of rainfall measurement that uses specific differential phase. J. Appl. Meteor., 35 , 20802090.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., , S. E. Giangrande, , V. M. Melnikov, , and T. J. Schuur, 2005a: Calibration issues of dual-polarization radar measurements. J. Atmos. Oceanic Technol., 22 , 11381155.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., , S. E. Giangrande, , and T. J. Schuur, 2005b: Rainfall estimation with a polarimetric prototype of WSR-88D. J. Appl. Meteor., 44 , 502515.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., , T. J. Schuur, , D. W. Burgess, , P. L. Heinselman, , S. E. Giangrande, , and D. S. Zrnić, 2005c: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86 , 809824.

    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., , S. E. Giangrande, , and A. V. Ryzhkov, 2008: Polarimetric WSR-88D reflectivity and differential reflectivity attenuation correction for tropical rainfall. Preprints, Int. Symp. of Weather Radar and Hydrology, Grenoble, France, P1-021.

    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., , and V. N. Bringi, 1976: Potential use of radar reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15 , 6976.

    • Search Google Scholar
    • Export Citation
  • Shafer, M. A., , C. A. Fiebrich, , D. S. Arndt, , S. E. Fredrickson, , and T. W. Hughes, 2000: Quality assurance procedures in the Oklahoma Mesonetwork. J. Atmos. Oceanic Technol., 17 , 474494.

    • Search Google Scholar
    • Export Citation
  • Sontag, E., 1992: Feedback stabilization using two-hidden-layer nets. IEEE Trans. Neural Network, 3 , 981990.

  • Straka, J. M., , D. S. Zrnić, , and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39 , 13411372.

    • Search Google Scholar
    • Export Citation
  • Testud, J., , E. Le Bouar, , E. Obligis, , and M. Ali-Mehenni, 2000: The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Oceanic Technol., 17 , 332356.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., , S. M. Ellis, , R. Oye, , D. S. Zrnic, , A. V. Ryzhkov, , and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80 , 381388.

    • Search Google Scholar
    • Export Citation
  • Vulpiani, G., , F. S. Marzano, , V. Chandrasekar, , A. Berne, , and R. Uijlenhoet, 2006: Polarimetric weather radar retrieval of raindrop size distribution by means of a regularized artificial neural network. IEEE Trans. Geosci. Remote Sens., 44 , 32623275.

    • Search Google Scholar
    • Export Citation
  • Vulpiani, G., , P. Tabary, , J. Parent-Du-Chatelet, , and F. S. Marzano, 2008: Comparison of advanced radar polarimetric techniques for operational attenuation correction at C-band. J. Atmos. Oceanic Technol., 25 , 11181135.

    • Search Google Scholar
    • Export Citation
  • Widrow, B., , and M. E. Hoff, 1960: Adaptive switching circuits. IRE WESCON Convention Record, 135 pp.

  • Wilson, J. W., , and E. A. Brandes, 1979: Radar measurement of rainfall - A summary. Bull. Amer. Meteor. Soc., 60 , 10481058.

  • Zawadzki, I. I., 1975: On radar-raingauge comparison. J. Appl. Meteor., 14 , 14301436.

  • Zhang, G., , J. Vivekanandan, , and E. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39 , 830841.

    • Search Google Scholar
    • Export Citation
  • Zrnic, D. S., , and A. V. Ryzhkov, 1999: Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc., 80 , 389406.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 57 57 7
PDF Downloads 59 59 2

Rainfall Estimation from Polarimetric S-Band Radar Measurements: Validation of a Neural Network Approach

View More View Less
  • 1 Météo-France, Toulouse, France
  • | 2 Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada
  • | 3 Department of Electronic Engineering, Sapienza University of Rome, Rome, and Center of Excellence CETEMPS, University of L’Aquila, L’Aquila, Italy
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A procedure for the estimation of rainfall rate, capitalizing on a radar-based raindrop size distribution (RSD) parameter retrieval and neural network (NN) inversion techniques, is validated using an extensive and quality-controlled archive. The RSD retrieval algorithm utilizes polarimetric variables measured by the polarimetric prototype of the Weather Surveillance Radar-1988 Doppler (WSR-88D) in Norman, Oklahoma (KOUN), through an ad hoc regularized neural network method. Evaluation of rainfall estimation from the NN-based method is accomplished using a large radar data and surface gauge observation dataset collected in central Oklahoma during the multiyear Joint Polarization Experiment (JPOLE) field campaign. Point estimates of hourly rainfall accumulations and instantaneous rainfall rates from NN-based and parametric polarimetric rainfall relations are compared with dense surface gauge observations. Rainfall accumulations from RSD retrieval-based methods are shown to be sensitive to the choice of a raindrop fall speed model. To minimize the impact of this choice, a new “direct” neural network approach is tested. Proposed NN-based approaches exhibit bias and root-mean-square error characteristics comparable with those obtained from parametric relations, specifically optimized for the JPOLE dataset, indicating an appealing generalization capability with respect to the climatological context. All tested polarimetric relations are shown to be sensitive to hail contamination as inferred from the results of automatic polarimetric echo classification and available storm reports.

Corresponding author address: Gianfranco Vulpiani, Prime Ministry, Department of Civil Protection, Via Vitorchiano 4, 00189 Roma, Italy. Email: gianfranco.vulpiani@protezionecivile.it

Abstract

A procedure for the estimation of rainfall rate, capitalizing on a radar-based raindrop size distribution (RSD) parameter retrieval and neural network (NN) inversion techniques, is validated using an extensive and quality-controlled archive. The RSD retrieval algorithm utilizes polarimetric variables measured by the polarimetric prototype of the Weather Surveillance Radar-1988 Doppler (WSR-88D) in Norman, Oklahoma (KOUN), through an ad hoc regularized neural network method. Evaluation of rainfall estimation from the NN-based method is accomplished using a large radar data and surface gauge observation dataset collected in central Oklahoma during the multiyear Joint Polarization Experiment (JPOLE) field campaign. Point estimates of hourly rainfall accumulations and instantaneous rainfall rates from NN-based and parametric polarimetric rainfall relations are compared with dense surface gauge observations. Rainfall accumulations from RSD retrieval-based methods are shown to be sensitive to the choice of a raindrop fall speed model. To minimize the impact of this choice, a new “direct” neural network approach is tested. Proposed NN-based approaches exhibit bias and root-mean-square error characteristics comparable with those obtained from parametric relations, specifically optimized for the JPOLE dataset, indicating an appealing generalization capability with respect to the climatological context. All tested polarimetric relations are shown to be sensitive to hail contamination as inferred from the results of automatic polarimetric echo classification and available storm reports.

Corresponding author address: Gianfranco Vulpiani, Prime Ministry, Department of Civil Protection, Via Vitorchiano 4, 00189 Roma, Italy. Email: gianfranco.vulpiani@protezionecivile.it

Save