• Ackerman, S. A., , R. E. Holz, , R. Frey, , E. W. Eloranta, , B. C. Maddux, , and M. McGill, 2008: Cloud detection with MODIS. Part II: Validation. J. Atmos. Oceanic Technol., 25 , 10731086.

    • Search Google Scholar
    • Export Citation
  • Barnes, W. L., , T. S. Pagano, , and V. V. Salomonson, 1998: Pre-launch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1. IEEE Trans. Geosci. Remote Sens., 36 , 10881100.

    • Search Google Scholar
    • Export Citation
  • Cho, H-M., , P. Yang, , G. W. Kattawar, , S. L. Nasiri, , Y. Hu, , P. Minnis, , C. Trepte, , and D. Winker, 2008: Depolarization ratio and attenuated backscatter for nine cloud types: Analyses based on collocated CALIPSO lidar and MODIS measurements. Opt. Express, 16 , 39313948.

    • Search Google Scholar
    • Export Citation
  • Chylek, P., , S. Robinson, , M. K. Dubey, , M. D. King, , Q. Fu, , and W. B. Clodius, 2006: Comparison of near-infrared and thermal infrared cloud phase detections. J. Geophys. Res., 111 , D20203. doi:10.1029/2006JD007140.

    • Search Google Scholar
    • Export Citation
  • Frey, R. A., , S. A. Ackerman, , Y. Liu, , K. I. Strabala, , H. Zhang, , J. R. Key, , and X. Wang, 2008: Cloud detection with MODIS. Part I: Improvements in the MODIS cloud mask for Collection 5. J. Atmos. Oceanic Technol., 25 , 10571072.

    • Search Google Scholar
    • Export Citation
  • Holz, R. E., , S. A. Ackerman, , F. W. Nagle, , R. Frey, , S. Dutcher, , R. E. Kuehn, , M. A. Vaughan, , and B. Baum, 2008: Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP. J. Geophys. Res., 113 , D00A19. doi:10.1029/2008JD009837.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., 2007: Depolarization ratio–effective lidar ratio relation: Theoretical basis for space lidar cloud phase discrimination. Geophys. Res. Lett., 34 , L11812. doi:10.1029/2007GL029584.

    • Search Google Scholar
    • Export Citation
  • Knap, W. H., , P. Stammes, , and R. B. A. Koelemeijer, 2002: Cloud thermodynamic-phase determination from near-infrared spectra of reflected sunlight. J. Atmos. Sci., 59 , 8396.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., , A. H. Omar, , Y. Hu, , M. A. Vaughan, , and D. M. Winker, 2005: CALIOP algorithm theoretical basis document—Part 3: Scene classification algorithms. NASA Langley Research Center Doc. PC-SCI-202 Part 3, 56 pp. [Available online at http://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-202_Part3_v1.0.pdf].

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., and Coauthors, 2008: MODIS global cloud-top pressure and amount estimation: Algorithm description and results. J. Appl. Meteor. Climatol., 47 , 11751198.

    • Search Google Scholar
    • Export Citation
  • Nasiri, S. L., , and B. H. Kahn, 2008: Limitations of bispectral infrared cloud phase determination and potential for improvement. J. Appl. Meteor. Climatol., 47 , 28952910.

    • Search Google Scholar
    • Export Citation
  • Pavolonis, M. J., , A. K. Heidinger, , and T. Uttal, 2005: Daytime global cloud typing from AVHRR and VIIRS: Algorithm description, validation, and comparisons. J. Appl. Meteor., 44 , 804826.

    • Search Google Scholar
    • Export Citation
  • Pilewskie, P., , and S. Twomey, 1987: Cloud phase discrimination by reflectance measurements near 1.6 and 2.2 μm. J. Atmos. Sci., 44 , 34193420.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., , M. D. King, , S. A. Ackerman, , W. P. Menzel, , B. A. Baum, , J. C. Riédi, , and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41 , 459473.

    • Search Google Scholar
    • Export Citation
  • Riédi, J., , M. Doutriaux-Boucher, , P. Goloub, , and P. Couvert, 2000: Global distribution of cloud top phase from POLDER/ADEOS I. Geophys. Res. Lett., 27 , 17071710.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83 , 17711790.

    • Search Google Scholar
    • Export Citation
  • Vaughan, M. A., and Coauthors, 2009: Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements. J. Atmos. Oceanic Technol., 26 , 20342050.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., , W. H. Hunt, , and M. J. McGill, 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett., 34 , L19803. doi:10.1029/2007GL030135.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 98 98 7
PDF Downloads 80 80 5

Application of CALIOP Measurements to the Evaluation of Cloud Phase Derived from MODIS Infrared Channels

View More View Less
  • 1 Department of Atmospheric Sciences, Texas A&M University, College Station, Texas
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

In this study, Moderate Resolution Imaging Spectroradiometer (MODIS) infrared-based cloud thermodynamic phase retrievals are evaluated using Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) retrievals for the 6 months from January to June of 2008. The CALIOP 5-km cloud-layer product provides information on cloud opacity, cloud-top height, midlayer cloud temperature, and cloud thermodynamic phase. Comparisons are made between MODIS IR phase and CALIOP observations for single-layer clouds (54% of the cloudy CALIOP scenes) and for the top layer of the CALIOP scenes. Both CALIOP and MODIS retrieve larger fractions of water clouds in the single-layer cases than in the top-layer cases, demonstrating that focusing on only single-layer clouds may introduce a water-cloud bias. Of the single-layer clouds, 60% are transparent and 40% are opaque (defined by the lack of a CALIOP ground return). MODIS tends to classify single-layer clouds with midlayer temperatures below −40°C as ice; around −30°C nearly equally as ice, mixed, and unknown; between −28° and −15°C as mixed; and above 0°C as water. Ninety-five percent of the single-layer CALIOP clouds not detected by MODIS are transparent. Approximately ⅓ of transparent single-layer clouds with temperatures below −30°C are not detected by MODIS and close to another ⅓ are classified as ice, with the rest assigned as water, mixed, or unknown. CALIOP classes nearly all of these transparent cold clouds as ice.

Corresponding author address: Shaima L. Nasiri, Dept. of Atmospheric Sciences, MS 3150, Texas A&M University, College Station, TX 77843-3150. Email: snasiri@tamu.edu

Abstract

In this study, Moderate Resolution Imaging Spectroradiometer (MODIS) infrared-based cloud thermodynamic phase retrievals are evaluated using Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) retrievals for the 6 months from January to June of 2008. The CALIOP 5-km cloud-layer product provides information on cloud opacity, cloud-top height, midlayer cloud temperature, and cloud thermodynamic phase. Comparisons are made between MODIS IR phase and CALIOP observations for single-layer clouds (54% of the cloudy CALIOP scenes) and for the top layer of the CALIOP scenes. Both CALIOP and MODIS retrieve larger fractions of water clouds in the single-layer cases than in the top-layer cases, demonstrating that focusing on only single-layer clouds may introduce a water-cloud bias. Of the single-layer clouds, 60% are transparent and 40% are opaque (defined by the lack of a CALIOP ground return). MODIS tends to classify single-layer clouds with midlayer temperatures below −40°C as ice; around −30°C nearly equally as ice, mixed, and unknown; between −28° and −15°C as mixed; and above 0°C as water. Ninety-five percent of the single-layer CALIOP clouds not detected by MODIS are transparent. Approximately ⅓ of transparent single-layer clouds with temperatures below −30°C are not detected by MODIS and close to another ⅓ are classified as ice, with the rest assigned as water, mixed, or unknown. CALIOP classes nearly all of these transparent cold clouds as ice.

Corresponding author address: Shaima L. Nasiri, Dept. of Atmospheric Sciences, MS 3150, Texas A&M University, College Station, TX 77843-3150. Email: snasiri@tamu.edu

Save