Study of Regional-Scale Boundary Layer Characteristics over Northern India with a Special Reference to the Role of the Thar Desert in Regional-Scale Transport

Jagabandhu Panda Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India

Search for other papers by Jagabandhu Panda in
Current site
Google Scholar
PubMed
Close
,
Maithili Sharan Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India

Search for other papers by Maithili Sharan in
Current site
Google Scholar
PubMed
Close
, and
S. G. Gopalakrishnan Hurricane Research Division, NOAA/AOML/OAR/DOC, Miami, Florida

Search for other papers by S. G. Gopalakrishnan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Extensive contrasts of land surface heterogeneities have a pivotal role in modulating boundary layer processes and consequently, the regional-scale dispersion of air pollutants. The Weather Research and Forecasting (WRF) modeling system has been used to analyze the regional-scale boundary layer features over northern India. Two cases, 9–11 December 2004 and 20–22 May 2005, representing the winter and summer season, respectively, are chosen for the simulations. The model results have been compared with the observations from the India Meteorological Department (IMD) and Wyoming Weather Web data archive over three cities: Delhi, Ahmedabad, and Jodhpur. The simulations show that the thermal stratifications and the associated wind pattern are very well supported by land surface characteristics over the region. The results signify that the underlying land surface along with the prevailing hemispheric-scale meteorological processes (synoptic conditions) is the driver of the simulated patterns. The study implies that thermally driven regional circulations play a major role in the transport of particulate matter from the Thar Desert to Delhi and its neighboring regions during summer.

Corresponding author address: Prof. Maithili Sharan, Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi – 110 016, India. Email: mathilis@cas.iitd.ernet.in

Abstract

Extensive contrasts of land surface heterogeneities have a pivotal role in modulating boundary layer processes and consequently, the regional-scale dispersion of air pollutants. The Weather Research and Forecasting (WRF) modeling system has been used to analyze the regional-scale boundary layer features over northern India. Two cases, 9–11 December 2004 and 20–22 May 2005, representing the winter and summer season, respectively, are chosen for the simulations. The model results have been compared with the observations from the India Meteorological Department (IMD) and Wyoming Weather Web data archive over three cities: Delhi, Ahmedabad, and Jodhpur. The simulations show that the thermal stratifications and the associated wind pattern are very well supported by land surface characteristics over the region. The results signify that the underlying land surface along with the prevailing hemispheric-scale meteorological processes (synoptic conditions) is the driver of the simulated patterns. The study implies that thermally driven regional circulations play a major role in the transport of particulate matter from the Thar Desert to Delhi and its neighboring regions during summer.

Corresponding author address: Prof. Maithili Sharan, Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi – 110 016, India. Email: mathilis@cas.iitd.ernet.in

Save
  • Atkeson, T., H. Greening, and N. Poor, 2007: Bay region atmospheric chemistry experiment. Atmos. Environ., 41 , 41634164.

  • Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112 , 693709.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface/hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129 , 569585.

    • Search Google Scholar
    • Export Citation
  • Conzemius, R. J., and E. Fedorovich, 2006a: Dynamics of sheared convective boundary layer entrainment. Part I: Meteorological background and large-eddy simulations. J. Atmos. Sci., 63 , 11511178.

    • Search Google Scholar
    • Export Citation
  • Conzemius, R. J., and E. Fedorovich, 2006b: Dynamics of sheared convective boundary layer entrainment. Part II: Evaluation of bulk model predictions of entrainment flux. J. Atmos. Sci., 63 , 11791199.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46 , 30773107.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., D. Gill, K. Manning, W. Wang, C. Bruyere, S. Kelly, and K. Lackey, 2005: PSU/NCAR Mesoscale Modeling System tutorial class notes and user’s guide: MM5 Modeling System version 3. NCAR Mesoscale and Microscale Meteorology Division, 402 pp.

    • Search Google Scholar
    • Export Citation
  • El-Askary, H., R. Gautam, R. P. Singh, and M. Kafatos, 2006: Dust storms detection over the Indo-Gangetic basin using multi sensor data. Adv. Space Res., 37 , 728733.

    • Search Google Scholar
    • Export Citation
  • Fang, J., and R. Wu, 2005: The influence of the geostrophic wind advection approximation on a well-mixed layer. Bound.-Layer Meteor., 114 , 3152.

    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., and R. Avissar, 2000: An LES study of the impacts of land surface heterogeneity on dispersion in the convective boundary layer. J. Atmos. Sci., 57 , 352371.

    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., M. Sharan, R. T. McNider, and M. P. Singh, 1998: A study of turbulent and radiative processes in the stable boundary layer under weak wind conditions. J. Atmos. Sci., 55 , 954960.

    • Search Google Scholar
    • Export Citation
  • Goyal, P., and Sidhartha, 2002: Effect of winds on SO2 and SPM concentrations in Delhi. Atmos. Environ., 36 , 29252930.

  • Grell, G. A., S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock, and B. Eder, 2005: Fully coupled “online” chemistry within the WRF model. Atmos. Environ., 39 , 69576975.

    • Search Google Scholar
    • Export Citation
  • Gupta, I., and R. Kumar, 2006: Trends of particulate in four cities in India. Atmos. Environ., 40 , 25522566.

  • Hong, S-Y., and H-L. Pan, 1996: Non-local boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124 , 23222339.

    • Search Google Scholar
    • Export Citation
  • Janjic, Z. I., 1990: The step-mountain coordinates: Physical package. Mon. Wea. Rev., 118 , 14291443.

  • Janjic, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122 , 927945.

    • Search Google Scholar
    • Export Citation
  • Jiang, F., T. Wang, T. T. Wang, M. Xie, and H. Zhao, 2008: Numerical modeling of a continuous photochemical pollution episode in Hong Kong using WRF-chem. Atmos. Environ., 42 , 87178727.

    • Search Google Scholar
    • Export Citation
  • Kar, S. C., and N. Ramanathan, 1989: A boundary layer model for the Andaman Islands. Proc. Natl. Acad. Sci. USA, 55A , 871885.

  • Kusaka, H., F. Chen, M. Tewari, and H. Hirakuchi, 2005: Impact of using the urban canopy model on the simulation of the heat island. Extended Abstracts, WRF/MM5 Users’ Workshop, Boulder, CO, NCAR.

    • Search Google Scholar
    • Export Citation
  • Laprise, R., 1992: The Euler equations of motion with hydrostatic pressure as independent variable. Mon. Wea. Rev., 120 , 197207.

  • McNider, R. T., and R. A. Pielke, 1981: Diurnal boundary-layer development over sloping terrain. J. Atmos. Sci., 38 , 21982212.

  • McNider, R. T., and R. A. Pielke, 1984: Numerical simulation of slope and mountain flows. J. Climate Appl. Meteor., 23 , 14411453.

  • McNider, R. T., M. D. Moran, and R. A. Pielke, 1988: Influence of diurnal and inertial boundary layer oscillations on long-range dispersion. Atmos. Environ., 22 , 24452462.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20 , 851875.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K., 2005: The community Noah land-surface model. User’s Guide Public Release Version 2.7.1, Environmental Modeling Center, NOAA/NCEP, 26 pp.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for heterogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 102 , (D14). 1666316682.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 1990: A thermodynamic foundation for modeling the moist atmosphere. J. Atmos. Sci., 47 , 25802593.

  • Pagowski, M., J. Hacker, and J. W. Bao, 2005: Behavior of WRF BL schemes and land surface models in 1d simulations during BAMEX. Extended Abstracts, WRF/MM5 Users’ Workshop, Boulder, CO, NCAR.

    • Search Google Scholar
    • Export Citation
  • Pandey, J. S., R. Kumar, and S. Devotta, 2005: Health risks of NO2, SPM and SO2 in Delhi (India). Atmos. Environ., 39 , 68686874.

  • Rama Krishna, T. V. B. P. S., M. Sharan, S. G. Gopalakrishnan, and Aditi, 2003: Mean structure of the nocturnal boundary layer under strong and weak wind conditions: EPRI case study. J. Appl. Meteor., 42 , 952969.

    • Search Google Scholar
    • Export Citation
  • Rogers, E., T. Black, B. Ferrier, Y. Lin, D. Parrish, and G. DiMego, 2001: Changes to the NCEP Meso Eta Analysis and Forecast System: Increase in resolution, new cloud microphysics, modified precipitation assimilation, modified 3DVAR analysis. NWS Tech. Procedures Bull., 24 pp. [Available online at http://www.emc.ncep.noaa.gov/mmb/mmbpll/eta12tpb/ and from National Weather Service, Office of Meteorology, 1325 East-West Highway, Silver Spring, MD 20910].

    • Search Google Scholar
    • Export Citation
  • Sharan, M., R. T. McNider, S. G. Gopalakrishnan, and M. P. Singh, 1995: Bhopal gas leak: A numerical simulation of episodic dispersion. Atmos. Environ., 29 , 20612070.

    • Search Google Scholar
    • Export Citation
  • Sharan, M., S. G. Gopalakrishnan, R. T. McNider, and M. P. Singh, 1996: Bhopal gas leak: A numerical investigation of the prevailing meteorological conditions. J. Appl. Meteor., 35 , 16371657.

    • Search Google Scholar
    • Export Citation
  • Sharan, M., S. G. Gopalakrishnan, R. T. McNider, and M. P. Singh, 2000: Bhopal gas leak: A numerical investigation on the possible influence of urban effects on the prevailing meteorological conditions. Atmos. Environ., 34 , 539552.

    • Search Google Scholar
    • Export Citation
  • Singh, M. P., R. T. McNider, and J. T. Lin, 1993: An analytical study of diurnal wind-structure variation in the boundary layer and the low-level nocturnal jet. Bound.-Layer Meteor., 63 , 397423.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the advanced research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 100 pp.

    • Search Google Scholar
    • Export Citation
  • Smirnova, T. G., J. M. Brown, and S. G. Benjamin, 1997: Performance of different soil model configurations in simulating ground surface temperature and surface fluxes. Mon. Wea. Rev., 125 , 18701884.

    • Search Google Scholar
    • Export Citation
  • Smirnova, T. G., J. M. Brown, S. G. Benjamin, and D. Kim, 2000: Parameterization of cold-season processes in the MAPS land-surface scheme. J. Geophys. Res., 105 , (D3). 40774086.

    • Search Google Scholar
    • Export Citation
  • Stull, R., 1993: Review of transilient turbulence theory and non-local mixing. Bound.-Layer Meteor., 62 , 2196.

  • Stull, R., and A. G. M. Driedonks, 1987: Applications of the transilient turbulence parameterization to atmospheric boundary-layer simulations. Bound.-Layer Meteor., 40 , 209239.

    • Search Google Scholar
    • Export Citation
  • Takemi, T., 2006: Impacts of moisture profile on the evolution and organization of midlatitude squall lines under various shear conditions. Atmos. Res., 82 , 3754.

    • Search Google Scholar
    • Export Citation
  • Wu, D., X. Tie, C. Li, Z. Ying, A. K. Lau, J. Huang, X. Deng, and X. Bi, 2005: An extremely low visibility event over the Guangzhou region: A case study. Atmos. Environ., 39 , 65686577.

    • Search Google Scholar
    • Export Citation
  • Yadav, S., M. S. Chauhan, and A. Sharma, 2007: Characterisation of bio-aerosols during dust storm period in N-NW India. Atmos. Environ., 41 , 60636073.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., C. Zhao, X. Tie, Q. Wei, M. Huang, G. Li, Z. Ying, and C. Li, 2006: Characterizations of aerosols over the Beijing region: A case study of aircraft measurements. Atmos. Environ., 40 , 45134527.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., 1995: Non-local turbulent transport: Pollution dispersion aspects of coherent structure of convective flows. Air Pollution Theory and Simulation, H. Power, N. Moussiopoulos, and C. A. Brebbia, Eds., Vol. 1, Air Pollution III, Computational Mechanics Publications, 53–60.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 327 111 13
PDF Downloads 257 73 6