Measurements and Simulations of Nadir-Viewing Radar Returns from the Melting Layer at X and W Bands

Liang Liao Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by Liang Liao in
Current site
Google Scholar
PubMed
Close
,
Robert Meneghini NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Robert Meneghini in
Current site
Google Scholar
PubMed
Close
,
Lin Tian Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by Lin Tian in
Current site
Google Scholar
PubMed
Close
, and
Gerald M. Heymsfield NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Gerald M. Heymsfield in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Simulated radar signatures within the melting layer in stratiform rain—namely, the radar bright band—are checked by means of comparisons with simultaneous measurements of the bright band made by the ER-2 Doppler radar (EDOP; X band) and Cloud Radar System (CRS; W band) airborne Doppler radars during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers–Florida-Area Cirrus Experiment (CRYSTAL-FACE) campaign in 2002. A stratified-sphere model, allowing the fractional water content to vary along the radius of the particle, is used to compute the scattering properties of individual melting snowflakes. Using the effective dielectric constants computed by the conjugate gradient–fast Fourier transform numerical method for X and W bands and expressing the fractional water content of a melting particle as an exponential function in particle radius, it is found that at X band the simulated radar brightband profiles are in an excellent agreement with the measured profiles. It is also found that the simulated W-band profiles usually resemble the shapes of the measured brightband profiles even though persistent offsets between them are present. These offsets, however, can be explained by the attenuation caused by cloud water and water vapor at W band. This is confirmed by comparisons of the radar profiles made in the rain regions where the unattenuated W-band reflectivity profiles can be estimated through the X- and W-band Doppler velocity measurements. The brightband model described in this paper has the potential to be used effectively for both radar and radiometer algorithms relevant to the satellite-based Tropical Rainfall Measuring Mission and Global Precipitation Measuring Mission.

Corresponding author address: Dr. Liang Liao, Goddard Earth Sciences and Technology Center/UMBC, Code 613.1, NASA/GSFC, Greenbelt, MD 20771. Email: liang.liao-1@nasa.gov

Abstract

Simulated radar signatures within the melting layer in stratiform rain—namely, the radar bright band—are checked by means of comparisons with simultaneous measurements of the bright band made by the ER-2 Doppler radar (EDOP; X band) and Cloud Radar System (CRS; W band) airborne Doppler radars during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers–Florida-Area Cirrus Experiment (CRYSTAL-FACE) campaign in 2002. A stratified-sphere model, allowing the fractional water content to vary along the radius of the particle, is used to compute the scattering properties of individual melting snowflakes. Using the effective dielectric constants computed by the conjugate gradient–fast Fourier transform numerical method for X and W bands and expressing the fractional water content of a melting particle as an exponential function in particle radius, it is found that at X band the simulated radar brightband profiles are in an excellent agreement with the measured profiles. It is also found that the simulated W-band profiles usually resemble the shapes of the measured brightband profiles even though persistent offsets between them are present. These offsets, however, can be explained by the attenuation caused by cloud water and water vapor at W band. This is confirmed by comparisons of the radar profiles made in the rain regions where the unattenuated W-band reflectivity profiles can be estimated through the X- and W-band Doppler velocity measurements. The brightband model described in this paper has the potential to be used effectively for both radar and radiometer algorithms relevant to the satellite-based Tropical Rainfall Measuring Mission and Global Precipitation Measuring Mission.

Corresponding author address: Dr. Liang Liao, Goddard Earth Sciences and Technology Center/UMBC, Code 613.1, NASA/GSFC, Greenbelt, MD 20771. Email: liang.liao-1@nasa.gov

Save
  • Brandes, E., K. Ikeda, G. Zhang, M. Schoenhuber, and R. Rasmussen, 2007: A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video distrometer. J. Appl. Meteor. Climatol., 46 , 634650.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., R. M. Rasmussen, and J. Vivekanandan, 1986: Multiparameter radar measurements in Colorado convective storms. Part I: Graupel melting studies. J. Atmos. Sci., 43 , 25452563.

    • Search Google Scholar
    • Export Citation
  • Bruggemann, D. A. G., 1935: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen: I. Dielectrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen (Calculation of various physical constants of heterogeneous subtances: I. Dielectric constants and conductivity of the heterostructures from isotropic substances). Ann. Phys., 24 , 636679.

    • Search Google Scholar
    • Export Citation
  • Du Toit, P. S., 1967: Doppler radar observations of drop size in continuous rain. J. Appl. Meteor., 6 , 10821087.

  • Fabry, F., and I. Zawadzki, 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52 , 838851.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., and W. Szymer, 1999: Modeling of the melting layer. Part II: Electromagnetics. J. Atmos. Sci., 56 , 35963600.

  • Fujiyoshi, Y., 1986: Melting snowflakes. J. Atmos. Sci., 43 , 307311.

  • Heymsfield, G. M., and Coauthors, 1996: The EDOP radar system on the high-altitude NASA ER-2 aircraft. J. Atmos. Oceanic Technol., 13 , 795809.

    • Search Google Scholar
    • Export Citation
  • Li, L., G. M. Heymsfield, P. E. Racette, L. Tian, and E. Zenker, 2004: A 94-GHz cloud radar system on a NASA high-altitude ER-2 aircraft. J. Atmos. Oceanic Technol., 21 , 13781388.

    • Search Google Scholar
    • Export Citation
  • Liao, L., and R. Meneghini, 2005: On modeling air/spaceborne radar returns in the melting layer. IEEE Trans. Geosci. Remote Sens., 43 , 27992809.

    • Search Google Scholar
    • Export Citation
  • Liao, L., R. Meneghini, L. Tian, and G. M. Heymsfield, 2008: Retrieval of snow and rain from combined X- and W-band airborne radar measurements. IEEE Trans. Geosci. Remote Sens., 46 , 15141524.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J., and P. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79 , 21852197.

  • Magono, C., and T. Nakamura, 1965: Aerodynamic studies of falling snowflakes. J. Meteor. Soc. Japan, 43 , 139147.

  • Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. J. Appl. Meteor., 5 , 165166.

  • Maxwell Garnett, J. C., 1904: Colors in metal glasses and in metallic films. Philos. Trans. Roy. Soc. London, A203 , 385420.

  • Meneghini, R., and L. Liao, 1996: Comparisons of cross sections for melting hydrometeors as derived from dielectric mixing formulas and a numerical method. J. Appl. Meteor., 35 , 16581670.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., and L. Liao, 2000: Effective dielectric constants of mixed-phase hydrometers. J. Atmos. Oceanic Technol., 17 , 628640.

  • Mitra, S. K., O. Vohl, M. Ahr, and H. R. Pruppacher, 1990: A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. IV: Experiment and theory for snow flakes. J. Atmos. Sci., 47 , 584591.

    • Search Google Scholar
    • Export Citation
  • Nakaya, U., 1954: Snow Crystals: Natural and Artificial. Harvard University Press, 510 pp.

  • Ohtake, T., 1969: Observations of the size distribution of hydrometeors through the melting layer. J. Atmos. Sci., 26 , 545557.

  • Olson, W. S., P. Bauer, N. F. Viltard, D. E. Johnson, W-K. Tao, R. Meneghini, and L. Liao, 2001a: A melting-layer model for passive/active microwave remote sensing applications. Part I: Model formulation and comparison with observations. J. Appl. Meteor., 40 , 11451163.

    • Search Google Scholar
    • Export Citation
  • Olson, W. S., P. Bauer, C. D. Kummerow, Y. Hong, and W-K. Tao, 2001b: A melting-layer model for passive/active microwave remote sensing applications. Part II: Simulations of TRMM observations. J. Appl. Meteor., 40 , 11641179.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., S. Giangrande, A. Khain, M. Pinsky, and A. Pokrovsky, 2008: Exploring model-based polarimetric retrieval of vertical profiles of precipitation. Proc. Fifth European Conf. on Radar Meteorology, Helsinki, Finland, Finnish Meteotological Institute. [Available online at http://www.erad2008.fmi.fi].

    • Search Google Scholar
    • Export Citation
  • Sassen, K., J. R. Campbell, J. Zhu, P. Kollias, M. Shupe, and C. Williams, 2005: Lidar and triple-wavelength Doppler radar measurements of the melting layer: A revised model for dark and brightband phenomena. J. Appl. Meteor., 44 , 301312.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., S. Matrosov, and J. Campbell, 2007: CloudSat spaceborne 94 GHz radar bright bands in the melting layer: An attenuation-driven upside-down lidar analog. Geophys. Res. Lett., 34 , L16818. doi:10.1029/2007GL030291.

    • Search Google Scholar
    • Export Citation
  • Stroud, D., and F. P. Pan, 1978: Self-consistent approach to electromagnetic wave propagation in composite media: Application to model granular metals. Phys. Rev., 17B , 16021610.

    • Search Google Scholar
    • Export Citation
  • Szyrmer, W., and I. Zawadzki, 1999: Modeling of the melting layer. Part I: Dynamics and microphysics. J. Atmos. Sci., 56 , 35733592.

  • Tian, L., G. M. Heymsfield, L. Li, and R. Srivastava, 2007: Properties of light stratiform rain derived from 10 and 94 GHz airborne Doppler radars. J. Geophys. Res., 112 , D11211. doi:10.1029/2006JD008144.

    • Search Google Scholar
    • Export Citation
  • Wu, Z. P., and Y. P. Wang, 1991: Electromagnetic scattering for multilayered sphere: Recursive algorithms. Radio Sci., 2 , 13911401.

  • Yokoyama, T., and H. Tanaka, 1984: Microphysical process of melting snowflakes detected by two-wavelength radar: Part I. Principle of measurement based on model calculation. J. Meteor. Soc. Japan, 62 , 650666.

    • Search Google Scholar
    • Export Citation
  • Yokoyama, T., H. Tanaka, K. Nakamura, and J. Awaka, 1984: Microphysical process of melting snowflakes detected by two-wavelength radar: Part II. Application of two-wavelength radar technique. J. Meteor. Soc. Japan, 62 , 668677.

    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., W. Szyrmer, C. Bell, and F. Fabry, 2005: Modeling of the melting layer. Part III: The density effect. J. Atmos. Sci., 62 , 37053723.

    • Search Google Scholar
    • Export Citation
  • Zikmunda, J., and G. Vali, 1972: Fall patterns and fall velocities of rimed ice crystals. J. Atmos. Sci., 29 , 13341347.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 205 48 4
PDF Downloads 142 25 1