Estimation of Atmospheric Motion Vectors from Kalpana-1 Imagers

C. M. Kishtawal Atmospheric Sciences Division, Meteorology and Oceanography Group, Remote Sensing Applications Area, Space Applications Centre, ISRO, Ahmedabad, India

Search for other papers by C. M. Kishtawal in
Current site
Google Scholar
PubMed
Close
,
S. K. Deb Atmospheric Sciences Division, Meteorology and Oceanography Group, Remote Sensing Applications Area, Space Applications Centre, ISRO, Ahmedabad, India

Search for other papers by S. K. Deb in
Current site
Google Scholar
PubMed
Close
,
P. K. Pal Atmospheric Sciences Division, Meteorology and Oceanography Group, Remote Sensing Applications Area, Space Applications Centre, ISRO, Ahmedabad, India

Search for other papers by P. K. Pal in
Current site
Google Scholar
PubMed
Close
, and
P. C. Joshi Atmospheric Sciences Division, Meteorology and Oceanography Group, Remote Sensing Applications Area, Space Applications Centre, ISRO, Ahmedabad, India

Search for other papers by P. C. Joshi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The estimation of atmospheric motion vectors from infrared and water vapor channels on the geostationary operational Indian National Satellite System Kalpana-1 has been attempted here. An empirical height assignment technique based on a genetic algorithm is used to determine the height of cloud and water vapor tracers. The cloud-motion-vector (CMV) winds at high and midlevels and water vapor winds (WVW) derived from Kalpana-1 show a very close resemblance to the corresponding Meteosat-7 winds derived at the European Organisation for the Exploitation of Meteorological Satellites when both are compared separately with radiosonde data. The 3-month mean vector difference (MVD) of high- and midlevel CMV and WVW winds derived from Kalpana-1 is very close to that of Meteosat-7 winds, when both are compared with radiosonde. When comparing with radiosonde, the low-level CMVs from Kalpana-1 have a higher MVD value than that of Meteosat-7. This may be due to the difference in spatial resolutions of Kalpana-1 and Meteosat-7.

Corresponding author address: Dr. S. K. Deb, Atmospheric Sciences Division, Meteorology and Oceanography Group, Remote Sensing Applications Area, Space Applications Centre, Indian Space Research Organisation, Ahmedabad 380015, India. Email: sanjib_deb@rediffmail.com

Abstract

The estimation of atmospheric motion vectors from infrared and water vapor channels on the geostationary operational Indian National Satellite System Kalpana-1 has been attempted here. An empirical height assignment technique based on a genetic algorithm is used to determine the height of cloud and water vapor tracers. The cloud-motion-vector (CMV) winds at high and midlevels and water vapor winds (WVW) derived from Kalpana-1 show a very close resemblance to the corresponding Meteosat-7 winds derived at the European Organisation for the Exploitation of Meteorological Satellites when both are compared separately with radiosonde data. The 3-month mean vector difference (MVD) of high- and midlevel CMV and WVW winds derived from Kalpana-1 is very close to that of Meteosat-7 winds, when both are compared with radiosonde. When comparing with radiosonde, the low-level CMVs from Kalpana-1 have a higher MVD value than that of Meteosat-7. This may be due to the difference in spatial resolutions of Kalpana-1 and Meteosat-7.

Corresponding author address: Dr. S. K. Deb, Atmospheric Sciences Division, Meteorology and Oceanography Group, Remote Sensing Applications Area, Space Applications Centre, Indian Space Research Organisation, Ahmedabad 380015, India. Email: sanjib_deb@rediffmail.com

Save
  • Alvarez, A., C. Lopez, M. Riera, E. Hernandez-Garcia, and J. Tintore, 2000: Forecasting the SST space-time variability of the Alboran Sea with genetic algorithms. Geophys. Res. Lett., 27 , 2709–2712.

    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., and J. R. Mecikalski, 2005: Application of satellite-derived atmospheric motion vectors for estimating meso-scale flows. J. Appl. Meteor., 44 , 1761–1772.

    • Search Google Scholar
    • Export Citation
  • Coakley, J., and F. Bretherton, 1982: Cloud cover from high-resolution scanner data; detecting and allowing for partially filled fields of view. J. Geophys. Res., 87 , 4917–4932.

    • Search Google Scholar
    • Export Citation
  • Deb, S. K., C. M. Kishtawal, P. K. Pal, and P. C. Joshi, 2008: A modified tracer selection and tracking procedure to derive winds using water vapor imagers. J. Appl. Meteor. Climatol., 47 , 3252–3263.

    • Search Google Scholar
    • Export Citation
  • EUMETSAT, 2005: Wind vector automatic quality control scheme. EUM/OPS/TEN/05/1747, 10 pp. [Available online at http://www.eumetsat.int/Home/Main/Documentation/Technical_and_Scientific_Documentation/Technical_Notes/SP_1124282585834?l=en].

    • Search Google Scholar
    • Export Citation
  • Fritz, S., and J. S. Winston, 1962: Synoptic use of radiation measurements from satellite TIROS-II. Mon. Wea. Rev., 90 , 1–9.

  • Fujita, T., 1968: Present status of cloud velocity computations from ATS-1 and ATS-3. COSPAR Space Res., 9 , 557–570.

  • Hayden, C. M., and R. J. Purser, 1995: Recursive filter objective analysis of meteorological fields: Applications to NESDIS operational processing. J. Appl. Meteor., 34 , 3–15.

    • Search Google Scholar
    • Export Citation
  • Holmlund, K., 1998: The utilization of statistical properties of satellite-derived atmospheric motion vectors to derive quality indicators. Wea. Forecasting, 13 , 1093–1104.

    • Search Google Scholar
    • Export Citation
  • Hubert, L. F., and L. F. Whitney Jr., 1971: Wind estimation from geostationary-satellite picture. Mon. Wea. Rev., 99 , 665–672.

  • Kelly, G., 2004: Observing system experiments of all main data types in the ECMWF operational system. Proc. Third WMO Workshop on the Impact of Various Observing Systems on Numerical Weather Prediction, WMO Tech. Rep. 1228, Alpbach, Austria, WMO, 32–36.

    • Search Google Scholar
    • Export Citation
  • Leese, J. A., C. S. Novak, and B. B. Clark, 1971: An automated technique for obtaining cloud motion from geosynchronous satellite data using cross correlation. J. Appl. Meteor., 10 , 118–132.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., W. L. Smith, and T. R. Stewart, 1983: Improved cloud motion vector and altitude assignment using VAS. J. Climate Appl. Meteor., 22 , 377–384.

    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and J. V. Sutcliffe, 1970: River flow forecasting through conceptual models. Part I: A discussion of principles. J. Hydrol., 10 , 282–290.

    • Search Google Scholar
    • Export Citation
  • Nieman, S. J., J. Schmetz, and W. P. Menzel, 1993: A comparison of several techniques to assign heights to cloud tracers. J. Appl. Meteor., 32 , 1559–1568.

    • Search Google Scholar
    • Export Citation
  • Nieman, S. J., W. P. Menzel, C. M. Hayden, D. D. Gray, S. Wanzong, C. Velden, and J. Daniels, 1997: Fully automated cloud-drift winds in NESDIS operations. Bull. Amer. Meteor. Soc., 78 , 1121–1133.

    • Search Google Scholar
    • Export Citation
  • Prasad, S., D. Singh, Y. V. Rama Rao, and V. R. Rao, 2004: Retrieval and validation of cloud motion vectors using infrared data from KALPANA-1 Satellite. Proc. Seventh Int. Winds Workshop, EUM P42, Helsinki, Finland, EUMETSAT, 61–70.

    • Search Google Scholar
    • Export Citation
  • Rattenborg, M., and K. Holmlund, 1996: Operational wind products from new Meteosat Ground Segment. Proc. Third Int. Winds Workshop, EUM P18, Ascona, Switzerland, EUMETSAT, 53–59.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., K. Holmlund, J. Hoffman, B. Strauss, B. Mason, V. Gaertner, A. Koch, and L. van de Berg, 1993: Operational cloud-motion winds from Meteosat infrared images. J. Appl. Meteor., 32 , 1206–1225.

    • Search Google Scholar
    • Export Citation
  • Singh, R., C. M. Kishtawal, and P. C. Joshi, 2005: Estimation of monthly mean air-sea temperature from satellite observations using genetic algorithm. Geophys. Res. Lett., 32 , L02807. doi:10.1029/2004GL021531.

    • Search Google Scholar
    • Export Citation
  • Singh, R., C. M. Kishtawal, P. K. Pal, and P. C. Joshi, 2006: Surface heat fluxes over global ocean exclusively from satellite observations. Mon. Wea. Rev., 134 , 965–980.

    • Search Google Scholar
    • Export Citation
  • Smith, W. L., H. M. Woolf, and W. J. Jacob, 1970: A regression method for obtaining real-time temperature and geopotential height profiles from satellite spectrometer measurements and its application to Nimbus-3 SIRS observations. Mon. Wea. Rev., 98 , 604–611.

    • Search Google Scholar
    • Export Citation
  • Szpiro, G. G., 1997: Forecasting chaotic time series with genetic algorithm. Phys. Rev., 55 , 2557–2568.

  • Tokuno, M., 1996: Operational system for extracting cloud motion and water vapor motion winds from GMS-5 image data. Proc. Third Int. Winds Workshop, EUM P18, Ascona, Switzerland, EUMETSAT, 21–30.

    • Search Google Scholar
    • Export Citation
  • Tokuno, M., 1998: Collocation area for comparison of satellite winds and radiosondes. Proc. Fourth Int. Winds Workshop, EUM P24, Saanenmöser, Switzerland, EUMETSAT, 21–28.

    • Search Google Scholar
    • Export Citation
  • Tomassini, C., 1981: Objective analysis of cloud fields. Proc. Satellite Meteorology of the Mediterranean, SP-159, Erice, Italy, ESA, 73–78.

    • Search Google Scholar
    • Export Citation
  • Velden, C. S., C. M. Hayden, S. J. Nieman, W. P. Menzel, S. Wanzong, and J. S. Goerss, 1997: Upper-tropospheric winds derived from geostationary satellite water vapor observations. Bull. Amer. Meteor. Soc., 78 , 173–195.

    • Search Google Scholar
    • Export Citation
  • Weldon, R. B., and S. J. Holmes, 1991: Water vapor imagery: Interpretation and applications to weather analysis and forecasting. NOAA Tech Rep. NESDIS 67, 213 pp.

    • Search Google Scholar
    • Export Citation
  • Young, M. T., 1975: The GOES wind operation. NOAA Tech. Memo. NESS 64, U.S. Dept. of Commerce, Springfield, VA, 111–121.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 347 107 8
PDF Downloads 233 74 6