Possibility of the Visible-Channel Calibration Using Deep Convective Clouds Overshooting the TTL

B-J. Sohn School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Search for other papers by B-J. Sohn in
Current site
Google Scholar
PubMed
Close
,
Seung-Hee Ham School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Search for other papers by Seung-Hee Ham in
Current site
Google Scholar
PubMed
Close
, and
Ping Yang Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Ping Yang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The authors examined the possible use of deep convective clouds (DCCs), defined as clouds that overshoot the tropical tropopause layer (TTL), for the calibration of satellite measurements at solar channels. DCCs are identified in terms of the Moderate Resolution Imaging Spectroradiometer (MODIS) 10.8-μm brightness temperature (TB11) on the basis of a criterion specified by TB11 ≤ 190 K. To determine the characteristics of these clouds, the MODIS-based cloud optical thickness (COT) and effective radius (re) for a number of identified DCCs are analyzed. It is found that COT values for most of the 4249 DCC pixels observed in January 2006 are close to 100. Based on the MODIS quality-assurance information, 90% and 70.2% of the 4249 pixels have COT larger than 100 and 150, respectively. On the other hand, the re values distributed between 15 and 25 μm show a sharp peak centered approximately at 20 μm. Radiances are simulated at the MODIS 0.646-μm channel by using a radiative transfer model under homogeneous overcast ice cloudy conditions for COT = 200 and re = 20 μm. These COT and re values are assumed to be typical for DCCs. A comparison between the simulated radiances and the corresponding Terra/Aqua MODIS measurements for 6 months in 2006 demonstrates that, on a daily basis, visible-channel measurements can be calibrated within an uncertainty range of ±5%. Because DCCs are abundant over the tropics and can be identified from infrared measurements, the present method can be applied to the calibration of a visible-channel sensor aboard a geostationary or low-orbiting satellite platform.

Corresponding author address: Prof. B.-J. Sohn, School of Earth and Environmental Sciences, Seoul National University, NS 80, Seoul 151-747, South Korea. Email: sohn@snu.ac.kr

Abstract

The authors examined the possible use of deep convective clouds (DCCs), defined as clouds that overshoot the tropical tropopause layer (TTL), for the calibration of satellite measurements at solar channels. DCCs are identified in terms of the Moderate Resolution Imaging Spectroradiometer (MODIS) 10.8-μm brightness temperature (TB11) on the basis of a criterion specified by TB11 ≤ 190 K. To determine the characteristics of these clouds, the MODIS-based cloud optical thickness (COT) and effective radius (re) for a number of identified DCCs are analyzed. It is found that COT values for most of the 4249 DCC pixels observed in January 2006 are close to 100. Based on the MODIS quality-assurance information, 90% and 70.2% of the 4249 pixels have COT larger than 100 and 150, respectively. On the other hand, the re values distributed between 15 and 25 μm show a sharp peak centered approximately at 20 μm. Radiances are simulated at the MODIS 0.646-μm channel by using a radiative transfer model under homogeneous overcast ice cloudy conditions for COT = 200 and re = 20 μm. These COT and re values are assumed to be typical for DCCs. A comparison between the simulated radiances and the corresponding Terra/Aqua MODIS measurements for 6 months in 2006 demonstrates that, on a daily basis, visible-channel measurements can be calibrated within an uncertainty range of ±5%. Because DCCs are abundant over the tropics and can be identified from infrared measurements, the present method can be applied to the calibration of a visible-channel sensor aboard a geostationary or low-orbiting satellite platform.

Corresponding author address: Prof. B.-J. Sohn, School of Earth and Environmental Sciences, Seoul National University, NS 80, Seoul 151-747, South Korea. Email: sohn@snu.ac.kr

Save
  • Barbieri, 1997: Draft of the MODIS level 1b algorithm theoretical basis document version 2.0. MODIS ATBD-MOD-01, NASA GSFC, 68 pp.

  • Barnes, W. L., T. S. Pagano, and V. V. Salomonson, 1998: Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1. IEEE Trans. Geosci. Remote Sens., 36 , 10881100.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., A. J. Heymsfield, P. Yang, and S. T. Bedka, 2005a: Bulk scattering models for the remote sensing of ice clouds. Part I: Microphysical data and models. J. Appl. Meteor., 44 , 18851895.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. Yang, A. J. Heymsfield, S. Platnick, M. D. King, Y-X. Hu, and S. T. Bedka, 2005b: Bulk scattering models for the remote sensing of ice clouds. Part II: Narrowband models. J. Appl. Meteor., 44 , 18961911.

    • Search Google Scholar
    • Export Citation
  • Cao, C., H. Xu, J. Sullivan, L. McMillin, P. Ciren, and Y. Hou, 2005: Intersatellite radiance biases for the High-Resolution Infrared Radiation Sounders (HIRS) on board NOAA-15, -16, and -17 from simultaneous nadir observations. J. Atmos. Oceanic Technol., 22 , 381395.

    • Search Google Scholar
    • Export Citation
  • Chung, E-S., B. J. Sohn, and J. Schmetz, 2008: CloudSat shedding new light on high-reaching tropical deep convection observed with Meteosat. Geophys. Res. Lett., 35 , L02814. doi:10.1029/2007GL032516.

    • Search Google Scholar
    • Export Citation
  • Doelling, D. R., L. Nguyen, and P. Minnis, 2004: On the use of deep convective clouds to calibrate AVHRR data. Earth Observing Systems IX, W. L. Barnes and J. J. Butler, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 5542), doi:10.1117/12.560047.

    • Search Google Scholar
    • Export Citation
  • Govaerts, Y. M., M. Clerici, and N. Clerbaux, 2004: Operational calibration of the Meteosat radiometer VIS band. IEEE Trans. Geosci. Remote Sens., 42 , 19001914.

    • Search Google Scholar
    • Export Citation
  • Gunshor, M. M., T. J. Schmit, and W. P. Menzel, 2004: Intercalibration of the infrared window and water vapor channels on operational geostationary environmental satellites using a single polar-orbiting satellite. J. Atmos. Oceanic Technol., 21 , 6168.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A., C. Cao, and J. Sullivan, 2002: Using Moderate Resolution Imaging Spectrometer (MODIS) to calibrate advanced very high resolution radiometer reflectance channels. J. Geophys. Res., 107 , 4702. doi:10.1029/2001JD002035.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and A. Gettelman, 2001: Horizontal transport and the dehydration of the stratosphere. Geophys. Res. Lett., 28 , 27992802.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., B. A. Wielicki, B. Lin, G. Gibson, S-C. Tsay, K. Stamnes, and T. Wong, 2000: δ-Fit: A fast and accurate treatment of particle scattering phase functions with weighted singular-value decomposition least-squares fitting. J. Quant. Spectrosc. Radiat. Transfer, 65 , 681690.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., B. A. Wielicki, P. Yang, P. W. Stackhouse, B. Lin, and D. Young, 2004: Application of deep convective cloud albedo observations to satellite-based study of terrestrial atmosphere: Monitoring stability of space-borne measurements and assessing absorption anomaly. IEEE Trans. Geosci. Remote Sens., 42 , 25942599.

    • Search Google Scholar
    • Export Citation
  • King, M. D., 1983: Number of terms required in the Fourier expansion of the reflection function for optically thick atmospheres. J. Quant. Spectrosc. Radiat. Transfer, 30 , 143161.

    • Search Google Scholar
    • Export Citation
  • King, M. D., S-C. Tsay, S. Platnick, and M. Wang, 1997: Cloud retrieval algorithms: Optical thickness, effective particle radius, and thermodynamic phase. MODIS ATBD Ref. ATBD-MOD-05, NASA GSFC, 79 pp.

    • Search Google Scholar
    • Export Citation
  • King, M. D., S. Platnick, P. A. Hubanks, G. T. Arnold, E. G. Moody, G. Wind, and B. Wind, cited. 2006: Collection 005 change summary for the MODIS cloud optical property (06_OD) algorithm. [Available online at http://modis-atmos.gsfc.nasa.gov/C005_Changes/C005_CloudOpticalProperties_ver311.pdf].

    • Search Google Scholar
    • Export Citation
  • Kratz, D. P., 1995: The correlated k-distribution technique as applied to the AVHRR channels. J. Quant. Spectrosc. Radiat. Transfer, 53 , 501517.

    • Search Google Scholar
    • Export Citation
  • Kratz, D. P., and F. G. Rose, 1999: Accounting for molecular absorption within the spectral range of the CERES window channel. J. Quant. Spectrosc. Radiat. Transfer, 61 , 8395.

    • Search Google Scholar
    • Export Citation
  • Lattanzio, A., P. D. Watts, and Y. Govaerts, 2006: Physical interpretation of warm water vapour pixels. EUMETSAT Rep. TM 14, 43 pp.

  • Liou, K. N., 2002: An Introduction to Atmospheric Radiation. 2nd ed. Academic Press, 577 pp.

  • Loeb, N. G., 1997: In-flight calibration of NOAA AVHRR visible and near-IR bands over Greenland and Antarctica. Int. J. Remote Sens., 18 , 477490.

    • Search Google Scholar
    • Export Citation
  • Luo, Z., G. Y. Liu, and G. L. Stephens, 2008: CloudSat adding new insight into tropical penetrating convection. Geophys. Res. Lett., 35 , L19819. doi:10.1029/2008GL035330.

    • Search Google Scholar
    • Export Citation
  • McClatchey, R. A., R. W. Fenn, J. E. A. Selby, F. E. Volz, and J. S. Garing, 1972: Optical properties of the atmosphere. Air Force Cambridge Research Laboratory Environmental Research Paper 411, 3rd ed., Bedford, MA, 110 pp.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., L. Nguyen, D. R. Doelling, D. F. Young, and D. P. Kratz, 2002a: Rapid calibration of operational and research meteorological satellite imagers. Part I: Evaluation of research satellite visible channels as references. J. Atmos. Oceanic Technol., 19 , 12331249.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., L. Nguyen, D. R. Doelling, D. F. Young, and D. P. Kratz, 2002b: Rapid calibration of operational and research meteorological satellite imagers. Part II: Comparison of infrared channels. J. Atmos. Oceanic Technol., 19 , 12501266.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., D. Doelling, L. Nguyen, W. Miller, and V. Chakrapani, 2008: Assessment of the visible channel calibrations of the VIRS on TRMM and MODIS on Aqua and Terra. J. Atmos. Oceanic Technol., 25 , 385400.

    • Search Google Scholar
    • Export Citation
  • Moeller, C. C., D. D. LaPorte, H. E. Revercomb, and W. P. Menzel, 2002: Radiometric evaluation of MODIS emissive bands through comparison to ER-2-based MAS data. Earth Observing Systems VI, W. L. Barnes, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 4483), doi:10.1117/12.453456.

    • Search Google Scholar
    • Export Citation
  • Moeller, C. C., S. Hook, D. Tobin, and V. Walden, 2006: Assessing MODIS LWIR band calibration accuracy. Earth Observing Systems XI, J. J. Butler and J. Xiong, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 6296), doi:10.1117/12.680933.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. Tanaka, 1988: Algorithm for radiative intensity calculations in moderate thick atmospheres using a truncation approximation. J. Quant. Spectrosc. Radiat. Transfer, 40 , 5169.

    • Search Google Scholar
    • Export Citation
  • Ricchiazzi, P., S. Yang, C. Gautier, and D. Sowle, 1998: SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere. Bull. Amer. Meteor. Soc., 79 , 21012114.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, and A. Ratier, 2002: An introduction to Meteosat Second Generation (MSG). Bull. Amer. Meteor. Soc., 83 , 977992.

    • Search Google Scholar
    • Export Citation
  • Six, D., M. Fily, S. Alvain, P. Henry, and J-P. Benoist, 2004: Surface characterisation of the Dome Concordia area (Antarctica) as a potential calibration site, using Spot4/Vegetation data. Remote Sens. Environ., 89 , 8394.

    • Search Google Scholar
    • Export Citation
  • Sohn, B-J., J. Schmetz, S. Tjemkes, M. Koenig, H. Lutz, A. Arriaga, and E-S. Chung, 2000: Intercalibration of the Meteosat-7 water vapor channel with SSM/T-2. J. Geophys. Res., 105 , 1567315680.

    • Search Google Scholar
    • Export Citation
  • Sohn, B-J., H-S. Park, H-J. Han, and M-H. Ahn, 2008: Evaluating the calibration of MTSAT-1R infrared channels using collocated Terra MODIS measurements. Int. J. Remote Sens., 29 , 30333042.

    • Search Google Scholar
    • Export Citation
  • Stamnes, K., S-C. Tsay, W. J. Wiscombe, and K. Jayaweera, 1988: Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27 , 25022509.

    • Search Google Scholar
    • Export Citation
  • Tobin, D. C., H. E. Revercomb, C. C. Moeller, and T. Pagano, 2006: Use of Atmospheric Infrared Sounder high-spectral resolution spectra to assess the calibration of Moderate resolution Imaging Spectroradiometer on EOS Aqua. J. Geophys. Res., 111 , D09S05. doi:10.1029/2005JD006095.

    • Search Google Scholar
    • Export Citation
  • Wu, X., and F. Sun, 2005: Post-launch calibration of GOES Imager visible channel using MODIS. Earth Observing Systems X, J. J. Butler, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 5882), doi:10.1117/12.615401.

    • Search Google Scholar
    • Export Citation
  • Xiong, X., and W. Barnes, 2006: An overview of MODIS radiometric calibration and characterization. Adv. Atmos. Sci., 23 , 6979.

  • Yang, P., K. N. Liou, K. Wyser, and D. Mitchell, 2000: Parameterization of the scattering and absorption properties of individual ice crystals. J. Geophys. Res., 105 , 46994718.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 293 104 14
PDF Downloads 207 57 11