A Satellite-Based Assessment of Upper-Tropospheric Water Vapor Measurements during AFWEX

Eui-Seok Chung Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Eui-Seok Chung in
Current site
Google Scholar
PubMed
Close
and
Brian J. Soden Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Brian J. Soden in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Consistency of upper-tropospheric water vapor measurements from a variety of state-of-the-art instruments was assessed using collocated Geostationary Operational Environmental Satellite-8 (GOES-8) 6.7-μm brightness temperatures as a common benchmark during the Atmospheric Radiation Measurement Program (ARM) First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE) Water Vapor Experiment (AFWEX). To avoid uncertainties associated with the inversion of satellite-measured radiances into water vapor quantity, profiles of temperature and humidity observed from in situ, ground-based, and airborne instruments are inserted into a radiative transfer model to simulate the brightness temperature that the GOES-8 would have observed under those conditions (i.e., profile-to-radiance approach). Comparisons showed that Vaisala RS80-H radiosondes and Meteolabor Snow White chilled-mirror dewpoint hygrometers are systemically drier in the upper troposphere by ∼30%–40% relative to the GOES-8 measured upper-tropospheric humidity (UTH). By contrast, two ground-based Raman lidars (Cloud and Radiation Test Bed Raman lidar and scanning Raman lidar) and one airborne differential absorption lidar agree to within 10% of the GOES-8 measured UTH. These results indicate that upper-tropospheric water vapor can be monitored by these lidars and well-calibrated, stable geostationary satellites with an uncertainty of less than 10%, and that correction procedures are required to rectify the inherent deficiencies of humidity measurements in the upper troposphere from these radiosondes.

Corresponding author address: Dr. Brian J. Soden, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. Email: bsoden@rsmas.miami.edu

Abstract

Consistency of upper-tropospheric water vapor measurements from a variety of state-of-the-art instruments was assessed using collocated Geostationary Operational Environmental Satellite-8 (GOES-8) 6.7-μm brightness temperatures as a common benchmark during the Atmospheric Radiation Measurement Program (ARM) First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE) Water Vapor Experiment (AFWEX). To avoid uncertainties associated with the inversion of satellite-measured radiances into water vapor quantity, profiles of temperature and humidity observed from in situ, ground-based, and airborne instruments are inserted into a radiative transfer model to simulate the brightness temperature that the GOES-8 would have observed under those conditions (i.e., profile-to-radiance approach). Comparisons showed that Vaisala RS80-H radiosondes and Meteolabor Snow White chilled-mirror dewpoint hygrometers are systemically drier in the upper troposphere by ∼30%–40% relative to the GOES-8 measured upper-tropospheric humidity (UTH). By contrast, two ground-based Raman lidars (Cloud and Radiation Test Bed Raman lidar and scanning Raman lidar) and one airborne differential absorption lidar agree to within 10% of the GOES-8 measured UTH. These results indicate that upper-tropospheric water vapor can be monitored by these lidars and well-calibrated, stable geostationary satellites with an uncertainty of less than 10%, and that correction procedures are required to rectify the inherent deficiencies of humidity measurements in the upper troposphere from these radiosondes.

Corresponding author address: Dr. Brian J. Soden, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. Email: bsoden@rsmas.miami.edu

Save
  • Chung, E. S., B. J. Sohn, J. Schmetz, and M. Koenig, 2007: Diurnal variation of upper-tropospheric humidity and its relations to convective activities over tropical Africa. Atmos. Chem. Phys., 7 , 24892502.

    • Search Google Scholar
    • Export Citation
  • Chung, E. S., B. J. Sohn, and J. Schmetz, 2008: CloudSat shedding new light on high-reaching tropical deep convection observed with Meteosat. Geophys. Res. Lett., 35 , L02814. doi:10.1029/2007GL032516.

    • Search Google Scholar
    • Export Citation
  • Ellrod, G. P., R. V. Achutuni, J. M. Daniels, E. M. Prins, and J. P. Nelson III, 1998: An assessment of GOES-8 Imager data quality. Bull. Amer. Meteor. Soc., 79 , 25092526.

    • Search Google Scholar
    • Export Citation
  • Ferrare, R. A., S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, and D. O’C. Starr, 1995: A comparison of water vapor measurements made by Raman lidar and radiosondes. J. Atmos. Oceanic Technol., 12 , 11771195.

    • Search Google Scholar
    • Export Citation
  • Ferrare, R. A., and Coauthors, 2004: Characterization of upper-tropospheric water vapor measurements during AFWEX using LASE. J. Atmos. Oceanic Technol., 21 , 17901808.

    • Search Google Scholar
    • Export Citation
  • Goldsmith, J. E. M., F. H. Blair, S. E. Bisson, and D. D. Turner, 1998: Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols. Appl. Opt., 37 , 49794990.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Energy Environ., 25 , 441475.

  • Ismail, S., E. V. Browell, R. A. Ferrare, S. A. Kooi, M. B. Clayton, V. G. Brackett, and P. B. Russell, 2000: LASE measurements of aerosol and water vapor profiles during TARFOX. J. Geophys. Res., 105 , 99039916.

    • Search Google Scholar
    • Export Citation
  • Ismail, S., and Coauthors, 2002: LASE characterization of water vapor over the ARM SGP during AFWEX. Proc. 12th Atmospheric Radiation Measurement (ARM) Science Team Meeting, St. Petersburg, FL, U.S. Dept. of Energy, 1.

    • Search Google Scholar
    • Export Citation
  • Joiner, J., H-T. Lee, L. L. Strow, P. K. Bhartia, S. Hannon, A. J. Miller, and L. G. Rokke, 1998: Radiative transfer in the 9.6 μm HIRS ozone channel using collocated SBUV-determined ozone abundances. J. Geophys. Res., 103 , 1921319219.

    • Search Google Scholar
    • Export Citation
  • Kim, S. W., E. S. Chung, S. C. Yoon, B. J. Sohn, and N. Sugimoto, 2009: Intercomparisons of cloud top and base heights from ground-based lidar, CloudSat and CALIPSO. Int. J. Remote Sens., in press.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., F. C. Holt, T. J. Schmit, R. M. Aune, A. J. Schreiner, G. S. Wade, and D. G. Gray, 1998: Application of GOES-8/9 soundings to weather forecasting and nowcasting. Bull. Amer. Meteor. Soc., 79 , 20592077.

    • Search Google Scholar
    • Export Citation
  • Miloshevich, L. M., H. Vömel, S. J. Oltmans, and A. Paukkunen, 2003: In situ validation of a correction for time-lag and bias errors in Vaisala RS80-H radiosonde humidity measurements. Proc. 13th ARM Science Team Meeting, Broomfield, CO, U.S. Dept. of Energy, 1–10.

    • Search Google Scholar
    • Export Citation
  • Miloshevich, L. M., A. Paukkunen, H. Vömel, and S. J. Oltmans, 2004: Development and validation of a time-lag correction for Vaisala radiosonde humidity measurements. J. Atmos. Oceanic Technol., 21 , 13051327.

    • Search Google Scholar
    • Export Citation
  • Revercomb, H. E., and Coauthors, 2003: The ARM Program’s water vapor intensive observation periods: Overview, initial accomplishments, and future challenges. Bull. Amer. Meteor. Soc., 84 , 217236.

    • Search Google Scholar
    • Export Citation
  • Ross, R. J., and D. J. Gaffen, 1998: Comment on “Widespread tropical atmospheric drying from 1979 to 1995” by Schroeder and McGuirk. Geophys. Res. Lett., 25 , 43574358.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., 1998: Tracking upper-tropospheric water vapor radiances: A satellite perspective. J. Geophys. Res., 103 , 1706917081.

  • Soden, B. J., and F. P. Bretherton, 1993: Upper-tropospheric relative humidity from the GOES 6.7 μm channel: Method and climatology for July 1987. J. Geophys. Res., 98 , 1666916688.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and J. R. Lanzante, 1996: An assessment of satellite and radiosonde climatologies of upper-tropospheric water vapor. J. Climate, 9 , 12351250.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., S. A. Ackerman, D. O’C. Starr, S. H. Melfi, and R. A. Ferrare, 1994: Comparison of upper-tropospheric water vapor from GOES, Raman lidar, and cross-chain loran atmospheric sounding system measurements. J. Geophys. Res., 99 , 2100521016.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., D. D. Turner, B. M. Lesht, and L. M. Miloshevich, 2004: An analysis of satellite, radiosonde, and lidar observations of upper-tropospheric water vapor from the Atmospheric Radiation Measurement Program. J. Geophys. Res., 109 , D04105. doi:10.1029/2003JD003828.

    • Search Google Scholar
    • Export Citation
  • Sohn, B. J., and J. Schmetz, 2004: Water vapor induced OLR variations associated with high cloud changes over the tropics: A study from Meteosat-5 observations. J. Climate, 17 , 19871996.

    • Search Google Scholar
    • Export Citation
  • Sohn, B. J., and R. Bennartz, 2008: Contribution of water vapor to observational estimates of longwave cloud radiative forcing. J. Geophys. Res., 113 , D20107. doi:10.1029/2008JD010053.

    • Search Google Scholar
    • Export Citation
  • Sohn, B. J., J. Schmetz, S. Tjemkes, M. Koenig, H. Lutz, A. Arriaga, and E. S. Chung, 2000: Intercalibration of the Meteosat-7 water vapor channel with SSM/T-2. J. Geophys. Res., 105 , 1567315680.

    • Search Google Scholar
    • Export Citation
  • Sohn, B. J., J. Schmetz, R. Stuhlmann, and J. Y. Lee, 2006: Dry bias in satellite-derived clear-sky water vapor and its contribution to longwave cloud radiative forcing. J. Climate, 19 , 55705580.

    • Search Google Scholar
    • Export Citation
  • Tobin, D. C., H. E. Revercomb, and D. D. Turner, 2002: Overview of the ARM/FIRE Water Vapor Experiment (AFWEX). Proc. 12th Atmospheric Radiation Measurement (ARM) Science Team Meeting, St. Petersburg, FL, U.S. Dept. of Energy, 1–6.

    • Search Google Scholar
    • Export Citation
  • Tobin, D. C., and Coauthors, 2006: Atmospheric Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation. J. Geophys. Res., 111 , D09S14. doi:10.1029/2005JD006103.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., B. M. Lesht, S. A. Clough, J. C. Liljegren, H. E. Revercomb, and D. C. Tobin, 2003: Dry bias and variability in Vaisala RS80-H radiosondes: The ARM experience. J. Atmos. Oceanic Technol., 20 , 117132.

    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., and S. H. Melfi, 1999: Cloud liquid water, mean droplet radius, and number density measurements using a Raman lidar. J. Geophys. Res., 104 , 3141131419.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 403 298 24
PDF Downloads 84 21 2