A Modification to the NOAH LSM to Simulate Heat Mitigation Strategies in the New York City Metropolitan Area

Barry H. Lynn Center for Climate Systems Research, Columbia University, New York, New York

Search for other papers by Barry H. Lynn in
Current site
Google Scholar
PubMed
Close
,
Toby N. Carlson The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Toby N. Carlson in
Current site
Google Scholar
PubMed
Close
,
Cynthia Rosenzweig NASA Goddard Institute for Space Studies, and Center for Climate Systems Research, Columbia University, New York, New York

Search for other papers by Cynthia Rosenzweig in
Current site
Google Scholar
PubMed
Close
,
Richard Goldberg Center for Climate Systems Research, Columbia University, New York, New York

Search for other papers by Richard Goldberg in
Current site
Google Scholar
PubMed
Close
,
Leonard Druyan Center for Climate Systems Research, Columbia University, New York, New York

Search for other papers by Leonard Druyan in
Current site
Google Scholar
PubMed
Close
,
Jennifer Cox Hunter College of the City University of New York, New York, New York

Search for other papers by Jennifer Cox in
Current site
Google Scholar
PubMed
Close
,
Stuart Gaffin Center for Climate Systems Research, Columbia University, New York, New York

Search for other papers by Stuart Gaffin in
Current site
Google Scholar
PubMed
Close
,
Lily Parshall Center for Climate Systems Research, Columbia University, New York, New York

Search for other papers by Lily Parshall in
Current site
Google Scholar
PubMed
Close
, and
Kevin Civerolo *Bureau of Air Research, New York State Department of Environmental Conservation, Albany, New York

Search for other papers by Kevin Civerolo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new approach to simulating the urban environment with a mesocale model has been developed to identify efficient strategies for mitigating increases in surface air temperatures associated with the urban heat island (UHI). A key step in this process is to define a “global” roughness for the cityscape and to use this roughness to diagnose 10-m temperature, moisture, and winds within an atmospheric model. This information is used to calculate local exchange coefficients for different city surface types (each with their own “local roughness” lengths); each surface’s energy balances, including surface air temperatures, humidity, and wind, are then readily obtained. The model was run for several summer days in 2001 for the New York City five-county area. The most effective strategy to reduce the surface radiometric and 2-m surface air temperatures was to increase the albedo of the city (impervious) surfaces. However, this caused increased thermal stress at street level, especially noontime thermal stress. As an alternative, the planting of trees reduced the UHI’s adverse effects of high temperatures and also reduced noontime thermal stress on city residents (and would also have reduced cooling energy requirements of small structures). Taking these results together, the analysis suggests that the best mitigation strategy is planting trees at street level and increasing the reflectivity of roofs.

+ Current affiliation: Weather It is, Ltd., Efrat, Israel.

Corresponding author address: Dr. Barry H. Lynn, Center for Climate Systems Research, 2880 Broadway, New York, NY 10025. Email: barry-lynn@weather-it-is.com

Abstract

A new approach to simulating the urban environment with a mesocale model has been developed to identify efficient strategies for mitigating increases in surface air temperatures associated with the urban heat island (UHI). A key step in this process is to define a “global” roughness for the cityscape and to use this roughness to diagnose 10-m temperature, moisture, and winds within an atmospheric model. This information is used to calculate local exchange coefficients for different city surface types (each with their own “local roughness” lengths); each surface’s energy balances, including surface air temperatures, humidity, and wind, are then readily obtained. The model was run for several summer days in 2001 for the New York City five-county area. The most effective strategy to reduce the surface radiometric and 2-m surface air temperatures was to increase the albedo of the city (impervious) surfaces. However, this caused increased thermal stress at street level, especially noontime thermal stress. As an alternative, the planting of trees reduced the UHI’s adverse effects of high temperatures and also reduced noontime thermal stress on city residents (and would also have reduced cooling energy requirements of small structures). Taking these results together, the analysis suggests that the best mitigation strategy is planting trees at street level and increasing the reflectivity of roofs.

+ Current affiliation: Weather It is, Ltd., Efrat, Israel.

Corresponding author address: Dr. Barry H. Lynn, Center for Climate Systems Research, 2880 Broadway, New York, NY 10025. Email: barry-lynn@weather-it-is.com

Save
  • Ackerman, B., 1985: Temporal march of the Chicago heat island. J. Climate Appl. Meteor., 24 , 547554.

  • Arnfield, J. A., 2003: Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol., 23 , 126.

    • Search Google Scholar
    • Export Citation
  • Balling, R. C., and R. S. Cerveny, 1987: Long-term associations between wind speeds and the urban heat island of Phoenix, Arizona. J. Climate Appl. Meteor., 26 , 712716.

    • Search Google Scholar
    • Export Citation
  • Bornstein, B., 1968: Observations of the urban heat island effect in New York City. J. Appl. Meteor., 7 , 575582.

  • Chen, F., and J. Dudhia, 2001a: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129 , 569585.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001b: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part II: Preliminary model validation. Mon. Wea. Rev., 129 , 587604.

    • Search Google Scholar
    • Export Citation
  • Chen, F., D. N. Yates, H. Nagai, M. A. LeMone, K. Ikeda, and R. L. Grossman, 2003: Land surface heterogeneity in the Cooperative Atmosphere Surface Exchange Study (CASES-97). Part I: Comparing modeled surface flux maps with surface flux tower and aircraft measurements. J. Hydrometeor., 4 , 196218.

    • Search Google Scholar
    • Export Citation
  • Chin, H-N. S., M. M. Leach, G. A. Sugiyama, J. M. Leone, H. Walker, and J. S. Nasstrom Jr., 2005: Evaluation of an urban canopy parameterization in a mesoscale model using VTMX and URBAN 2000 data. Mon. Wea. Rev., 133 , 20432068.

    • Search Google Scholar
    • Export Citation
  • Civerolo, K. L., G. Sistla, S. T. Rao, and D. J. Nowak, 2000: The effects of land use in meteorological modeling: Implications for assessment of future air quality scenarios. Atmos. Environ., 34 , 16151621.

    • Search Google Scholar
    • Export Citation
  • Coutts, A. M., J. Beringer, and N. J. Tapper, 2007: Impact of increasing urban density on local climate: Spatial and temporal variations in the surface energy balance in Melbourne, Australia. J. Appl. Meteor. Climatol., 46 , 477493.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State–NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121 , 14931513.

    • Search Google Scholar
    • Export Citation
  • Dupont, S., T. Otte, and J. Ching, 2004: Simulation of meteorological fields within and above urban and rural canopies with a mesoscale model. Bound.-Layer Meteor., 111 , 111158.

    • Search Google Scholar
    • Export Citation
  • Gallo, K. P., A. L. McNab, T. R. Karl, J. F. Brown, J. J. Hood, and J. D. Tarpley, 1993: The use of NOAA AVHRR data for assessment of the urban heat island effect. J. Appl. Meteor., 32 , 899908.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 121 pp.

    • Search Google Scholar
    • Export Citation
  • Grossman-Clarke, S., J. A. Zehnder, W. L. Stefanov, Y. Liu, and M. A. Zoldak, 2005: Urban modifications in a mesoscale meteorological model and the effects on near-surface variables in an arid metropolitan region. J. Appl. Meteor., 44 , 12811297.

    • Search Google Scholar
    • Export Citation
  • Hawkins, T. W., A. J. Brazel, W. L. Stefanov, W. Bigler, and E. M. Saffell, 2004: The role of rural variability in urban heat island determination for Phoenix, Arizona. J. Appl. Meteor., 43 , 476486.

    • Search Google Scholar
    • Export Citation
  • Holt, T., and J. Pullen, 2007: Urban canopy modeling of the New York City metropolitan area: A comparison and validation of single- and multilayer parameterizations. Mon. Wea. Rev., 135 , 19061930.

    • Search Google Scholar
    • Export Citation
  • Huang, Y. J., H. Akbari, H. Taha, and A. H. Rosenfeld, 1987: The potential of vegetation in reducing summer cooling loads in residential buildings. J. Appl. Meteor., 26 , 11031116.

    • Search Google Scholar
    • Export Citation
  • Kim, Y-H., and J-J. Baik, 2002: Maximum urban heat island intensity in Seoul. J. Appl. Meteor., 41 , 651659.

  • Kunkel, K. E., S. A. Changnon, and B. C. Reinke, 1996: The July 1995 heat wave in the Midwest: A climatic perspective and critical weather factors. Bull. Amer. Meteor. Soc., 77 , 15071518.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., and F. Kimura, 2004: Thermal effects of urban canyon structure on the nocturnal heat island: Numerical experiments using a mesoscale model coupled with an urban canopy model. J. Appl. Meteor., 43 , 18991910.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., F. Chen, T. Muku, and H. Hiromaru, 2005: Impact of the urban canopy model in the next-generation numerical weather prediction model, WRF. Environ. Syst. Res., 33 , 159164.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., F. Chen, T. Warner, and J. Basara, 2006: Verification of a mesoscale data assimilation and forecasting system for the Oklahoma City area during the Joint Urban 2003 Field Project. J. Appl. Meteor., 45 , 912929.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and R. Tinker, 1996: Some meteorological, climatological, and microclimatological considerations of the severe U.S. heat wave of mid-July 1995. Bull. Amer. Meteor. Soc., 77 , 20432054.

    • Search Google Scholar
    • Export Citation
  • Monteith, J. L., 1971: Principles of Environmental Physics. Arnold, 241 pp.

  • Myrup, L. O., 1969: A numerical model of the urban heat island. J. Appl. Meteor., 8 , 908918.

  • Nowak, D., K. Civerolo, S. T. Rao, G. Sistla, C. Luley, and D. Crane, 2000: A modeling study of the impact of urban trees on ozone. Atmos. Environ., 34 , 16011613.

    • Search Google Scholar
    • Export Citation
  • Ohashi, Y., and H. Kida, 2002: Local circulations developed in the vicinity of both coastal and inland urban areas: A numerical study with a mesoscale atmospheric model. J. Appl. Meteor., 41 , 3045.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1976: The distinction between canopy and boundary layer urban heat islands. Atmosphere, 14 , 268277.

  • Otte, T. L., A. Lacser, S. Dupont, and J. K. S. Ching, 2004: Implementation of an urban canopy parameterization in mesoscale meteorological model. J. Appl. Meteor., 43 , 16481665.

    • Search Google Scholar
    • Export Citation
  • Pielke, R., 1984: Mesocale Meteorological Modeling. Academic Press, 612 pp.

  • Roberts, S. M., T. R. Oke, C. S. B. Grimmond, and J. A. Voogt, 2006: Comparison of four methods to estimate urban heat storage. J. Appl. Meteor. Climatol., 45 , 17661781.

    • Search Google Scholar
    • Export Citation
  • Sailor, D. J., and H. Fan, 2004: The importance of including anthropogenic heating in mesoscale modeling of the urban heat island. Preprints, Symp. on Planning, Nowcasting, and Forecasting in the Urban Zone, Seattle, WA, Amer. Meteor. Soc., 3.5. [Available online at http://ams.confex.com/ams/pdfpapers/74444.pdf.].

    • Search Google Scholar
    • Export Citation
  • Seguin, B., and N. Gignoux, 1974: Etude expérimentale de l’influence d’un réseau de brise-vent sur le profil vertical de vitesse du vent [Experimental study of the influence of a network of wind barriers (hedgerows) on the vertical profile of wind speed]. Agric. For. Meteor., 13 , 1523.

    • Search Google Scholar
    • Export Citation
  • Steadman, R. G., 1971: Indices of wind chill of clothed persons. J. Appl. Meteor., 10 , 674683.

  • Taha, H., 1996: Modeling the impacts of increased urban vegetation on ozone air quality in the South Coast Air Basin. Atmos. Environ., 30 , 34233430.

    • Search Google Scholar
    • Export Citation
  • Taha, H., 1997: Modeling the impacts of large-scale albedo changes on ozone air quality in the South Coast Air Basin. Atmos. Environ., 31 , 16671676.

    • Search Google Scholar
    • Export Citation
  • Taha, H., 1999: Modifying a mesoscale meteorological model to better incorporate urban heat storage: A bulk-parameterization approach. J. Appl. Meteor., 38 , 466473.

    • Search Google Scholar
    • Export Citation
  • Zehnder, J. A., 2002: Simple modifications to improve fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model performance for the Phoenix, Arizona, metropolitan area. J. Appl. Meteor., 41 , 971979.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1092 336 95
PDF Downloads 530 152 18