A Preliminary Analysis of Spatial Variability of Raindrop Size Distributions during Stratiform Rain Events

Choong Ke Lee Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Taegu, Republic of Korea

Search for other papers by Choong Ke Lee in
Current site
Google Scholar
PubMed
Close
,
Gyu Won Lee Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Taegu, Republic of Korea, and National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Gyu Won Lee in
Current site
Google Scholar
PubMed
Close
,
Isztar Zawadzki J. S. Marshall Radar Observatory, Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Isztar Zawadzki in
Current site
Google Scholar
PubMed
Close
, and
Kyung-Eak Kim Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Taegu, Republic of Korea

Search for other papers by Kyung-Eak Kim in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The spatial variability of raindrop size distributions (DSDs) and precipitation fields is investigated utilizing disdrometric measurements from the four Precipitation Occurrence Sensor Systems (POSS) and radar reflectivity fields from S-band dual-polarization radar and vertically pointing X-band radar. The spatial cross correlation of the moments of DSDs, their ratio, error in rainfall estimate, and normalization parameters are quantified using a “noncentered” correlation function. The time-averaged spatial autocorrelation function of observed radar reflectivity factor (Ze) is smaller than that of estimated rainfall rate from Ze because of power-law RZ transformation with its exponent larger than unity. The important spatial variability of DSDs and rain integral fields is revealed by the significant differences among average DSDs and leads to an average fractional error of 25% in estimating rainfall accumulation during an event. The spatial correlation of the reflectivity from POSS is larger than that of Ze because of larger measurement noise in Ze. The higher moments of DSDs are less correlated in space than lower moments. The correlation of rainfall estimate error is higher than that of estimated rainfall rate and of rainfall rate calculated from DSDs. The correlation of the characteristic number density is low (0.87 at 1.3-km distance), suggesting that the assumed homogeneity of the characteristic number density in space could result in larger errors in the retrieval of DSDs and rain-related parameters. However, the characteristic diameter is highly correlated in space.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Choong Ke Lee, Dept. of Astronomy and Atmospheric Sciences, Kyungpook National University, 1370, Sankyuk-dong, Buk-gu, Taegu 702-701, South Korea. Email: leeck@mltm.go.kr

Abstract

The spatial variability of raindrop size distributions (DSDs) and precipitation fields is investigated utilizing disdrometric measurements from the four Precipitation Occurrence Sensor Systems (POSS) and radar reflectivity fields from S-band dual-polarization radar and vertically pointing X-band radar. The spatial cross correlation of the moments of DSDs, their ratio, error in rainfall estimate, and normalization parameters are quantified using a “noncentered” correlation function. The time-averaged spatial autocorrelation function of observed radar reflectivity factor (Ze) is smaller than that of estimated rainfall rate from Ze because of power-law RZ transformation with its exponent larger than unity. The important spatial variability of DSDs and rain integral fields is revealed by the significant differences among average DSDs and leads to an average fractional error of 25% in estimating rainfall accumulation during an event. The spatial correlation of the reflectivity from POSS is larger than that of Ze because of larger measurement noise in Ze. The higher moments of DSDs are less correlated in space than lower moments. The correlation of rainfall estimate error is higher than that of estimated rainfall rate and of rainfall rate calculated from DSDs. The correlation of the characteristic number density is low (0.87 at 1.3-km distance), suggesting that the assumed homogeneity of the characteristic number density in space could result in larger errors in the retrieval of DSDs and rain-related parameters. However, the characteristic diameter is highly correlated in space.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Choong Ke Lee, Dept. of Astronomy and Atmospheric Sciences, Kyungpook National University, 1370, Sankyuk-dong, Buk-gu, Taegu 702-701, South Korea. Email: leeck@mltm.go.kr

Save
  • Bellon, A., G. Lee, and I. Zawadzki, 2005: Error statistics of VPR corrections in stratiform precipitation. J. Appl. Meteor., 44 , 9981015.

    • Search Google Scholar
    • Export Citation
  • Bellon, A., G. Lee, A. Kilambi, and I. Zawadzki, 2007: Real-time comparisons of VPR-corrected daily rainfall estimates with a gauge mesonet. J. Appl. Meteor. Climatol., 46 , 726741.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60 , 354365.

    • Search Google Scholar
    • Export Citation
  • Campos, E., and I. Zawadzki, 2000: Instrumental uncertainties in Z–R relations. J. Appl. Meteor., 39 , 10881102.

  • Cho, Y. H., G. Lee, K. E. Kim, and I. Zawadzki, 2006: Identification and removal of ground echoes and anomalous propagation using the characteristics of radar echoes. J. Atmos. Oceanic Technol., 23 , 12061222.

    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., and W. F. Krajewski, 2006: Analysis and modeling of spatial correlation structure in small-scale rainfall in Central Oklahoma. Adv. Water Resour., 29 , 14501463.

    • Search Google Scholar
    • Export Citation
  • Datta, S., W. L. Jones, B. Roy, and A. Tokay, 2003: Spatial variability of surface rainfall as observed from TRMM field campaign data. J. Appl. Meteor., 42 , 598610.

    • Search Google Scholar
    • Export Citation
  • Fujiwara, M., 1965: Raindrop-size distribution from individual storms. J. Atmos. Sci., 22 , 585591.

  • Gebremichael, M., and W. F. Krajewski, 2004: Assessment of the statistical characterization of small-scale rainfall variability from radar: Analysis of TRMM ground validation datasets. J. Appl. Meteor., 43 , 11801199.

    • Search Google Scholar
    • Export Citation
  • Gunn, R., and G. D. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6 , 243248.

  • Habib, E., and W. F. Krajewski, 2002: Uncertainty analysis of the TRMM ground-validation radar-rainfall products: Application to the TEFLUN-B field campaign. J. Appl. Meteor., 41 , 558572.

    • Search Google Scholar
    • Export Citation
  • Huggel, A., W. Schmid, and A. Waldvogel, 1996: Raindrop size distributions and the radar bright band. J. Appl. Meteor., 35 , 16881702.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and T. M. Blackman, 2002: The need to represent raindrop size spectra as normalized Gamma distributions for the interpretation of polarization radar observations. J. Appl. Meteor., 41 , 286297.

    • Search Google Scholar
    • Export Citation
  • Isaac, G. A., S. G. Cober, J. W. Strapp, A. V. Korolev, A. Tremblay, and D. L. Marcotte, 2001: Recent Canadian research on aircraft in-flight icing. Can. Aeronaut. Space J., 47 , 213221.

    • Search Google Scholar
    • Export Citation
  • Isaac, G. A., and Coauthors, 2005: Nowcasting airport winter weather: AVISA tests during ARIS. Extended Abstracts, Symp. on Nowcasting and Very Short Range Forecasting (WSN05), Toulouse, France. World Weather Research Programme, 1–10.

    • Search Google Scholar
    • Export Citation
  • Joss, J., and A. Waldvogel, 1970: A method to improve the accuracy of radar measured amounts of precipitation. Proc. 14th Conf. on Radar Meteorology, Tucson, AZ, Amer. Meteor. Soc., 237–238.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. K., G. J. Ciach, and E. Habib, 2003: An analysis of small-scale rainfall variability in different climatic regimes. Hydro. Sci. J., 48 (2) 151162.

    • Search Google Scholar
    • Export Citation
  • LeBouar, E., J. Testud, and T. D. Keenan, 2001: Validation of the rain profiling algorithm ZPHI from the C-band polarimetric weather radar in Darwin. J. Atmos. Oceanic Technol., 18 , 18191837.

    • Search Google Scholar
    • Export Citation
  • Lee, C. K., G. Lee, and K. E. Kim, 2007: Variability of the rain drop size distributions within a storm. J. Korean Meteor. Soc., 43 (1) 115.

    • Search Google Scholar
    • Export Citation
  • Lee, G. W., and I. Zawadzki, 2005a: Time-scale dependence of the variability and its effects on rain estimation. J. Appl. Meteor., 44 , 241255.

    • Search Google Scholar
    • Export Citation
  • Lee, G. W., and I. Zawadzki, 2005b: Variability of drop size distributions: Noise and noise filtering in disdrometric data. J. Appl. Meteor., 44 , 634652.

    • Search Google Scholar
    • Export Citation
  • Lee, G. W., and I. Zawadzki, 2006: Errors in the radar calibration by gage, disdrometer, and polarimetry: Theoretical limit and application to operational radar. J. Hydrol., 328 , 8397.

    • Search Google Scholar
    • Export Citation
  • Lee, G. W., I. Zawadzki, W. Szymer, D. Sempere-Torres, and R. Uijlenhoet, 2004: A general approach to double-moment normalization of drop size distributions. J. Appl. Meteor., 43 , 264281.

    • Search Google Scholar
    • Export Citation
  • Lee, G. W., A. W. Seed, and I. Zawadzki, 2007: Modeling the variability of drop size distributions in space and time. J. Appl. Meteor. Climatol., 46 , 742756.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. J. Atmos. Sci., 5 , 165166.

  • Marshall, J. S., and E. H. Ballantyne, 1975: Weather surveillance radar. J. Appl. Meteor., 14 , 13171338.

  • Miriovsky, B. J., and Coauthors, 2004: An experimental study of small-scale variability of radar reflectivity using disdrometer observations. J. Appl. Meteor., 43 , 106118.

    • Search Google Scholar
    • Export Citation
  • Sekhon, R. S., and R. C. Srivastava, 1971: Doppler radar observations of drop-size distributions in a thunderstorm. J. Atmos. Sci., 28 , 983994.

    • Search Google Scholar
    • Export Citation
  • Sempere-Torres, D., J. M. Porrà, and J-D. Creutin, 1994: A general formulation for raindrop size distribution. J. Appl. Meteor., 33 , 14941502.

    • Search Google Scholar
    • Export Citation
  • Sempere-Torres, D., J. M. Porrà, and J-D. Creutin, 1998: Experimental evidence of a general description for raindrop size distribution properties. J. Geophys. Res., 103 , 17851797.

    • Search Google Scholar
    • Export Citation
  • Sheppard, B. E., 1990: Measurement of raindrop size distribution using a small Doppler radar. J. Atmos. Oceanic Technol., 7 , 255268.

  • Sheppard, B. E., and P. I. Joe, 1994: Comparison of raindrop size distribution measurements by a Joss–Waldvogel disdrometer, a PMS 2DG spectrometer, and a POSS Doppler radar. J. Atmos. Oceanic Technol., 11 , 874887.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., J. A. Smith, and R. Uijlenhoet, 2004: A microphysical interpretation of radar reflectivity–rain-rate relationships. J. Atmos. Sci., 61 , 11141131.

    • Search Google Scholar
    • Export Citation
  • Testud, J., E. LeBouar, E. Obligis, and M. Ali-Mehenni, 2000: The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Oceanic Technol., 17 , 332356.

    • Search Google Scholar
    • Export Citation
  • Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. Dou, 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40 , 11181140.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., and P. G. Bashor, 2007: An experimental study of small-scale variability of raindrop size distribution. Geophysical Research Abstracts, Vol. 9, Abstract 04685. [Available online at http://www.cosis.net/abstracts/EGU2007/04685/EGU2007-J-04685.pdf.].

    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., J. A. Smith, and M. Steiner, 2003a: The microphysical structure of extreme precipitation as inferred from ground-based raindrop spectra. J. Atmos. Sci., 60 , 12201238.

    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., M. Steiner, and J. A. Smith, 2003b: Variability of raindrop size distribution in a squall line and implications for radar rainfall estimation. J. Hydrometeor., 4 , 4361.

    • Search Google Scholar
    • Export Citation
  • Waldvogel, A., 1974: The N0 jump of raindrop spectra. J. Atmos. Sci., 31 , 10671078.

  • Zawadzki, I. I., 1973: Statistical properties of precipitation patterns. J. Appl. Meteor., 12 , 459472.

  • Zawadzki, I. I., 1975: On radar-raingage comparison. J. Appl. Meteor., 14 , 14301436.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 385 138 60
PDF Downloads 207 55 3