The CM-SAF and FUB Cloud Detection Schemes for SEVIRI: Validation with Synoptic Data and Initial Comparison with MODIS and CALIPSO

M. Reuter Deutscher Wetterdienst, Offenbach, Germany

Search for other papers by M. Reuter in
Current site
Google Scholar
PubMed
Close
,
W. Thomas Deutscher Wetterdienst, Offenbach, Germany

Search for other papers by W. Thomas in
Current site
Google Scholar
PubMed
Close
,
P. Albert Deutscher Wetterdienst, Offenbach, Germany

Search for other papers by P. Albert in
Current site
Google Scholar
PubMed
Close
,
M. Lockhoff Deutscher Wetterdienst, Offenbach, Germany

Search for other papers by M. Lockhoff in
Current site
Google Scholar
PubMed
Close
,
R. Weber Deutscher Wetterdienst, Offenbach, Germany

Search for other papers by R. Weber in
Current site
Google Scholar
PubMed
Close
,
K-G. Karlsson Swedish Meteorological and Hydrological Institute, Norrköping, Sweden

Search for other papers by K-G. Karlsson in
Current site
Google Scholar
PubMed
Close
, and
J. Fischer Institut fuumlr Weltraumwissenschaften, Freie Universität Berlin, Berlin, Germany

Search for other papers by J. Fischer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Satellite Application Facility on Climate Monitoring (CM-SAF) is aiming to retrieve satellite-derived geophysical parameters suitable for climate monitoring. CM-SAF started routine operations in early 2007 and provides a climatology of parameters describing the global energy and water cycle on a regional scale and partially on a global scale. Here, the authors focus on the performance of cloud detection methods applied to measurements of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on the first Meteosat Second Generation geostationary spacecraft. The retrieved cloud mask is the basis for calculating the cloud fractional coverage (CFC) but is also mandatory for retrieving other geophysical parameters. Therefore, the quality of the cloud detection directly influences climate monitoring of many other parameters derived from spaceborne sensors. CM-SAF products and results of an alternative cloud coverage retrieval provided by the Institut für Weltraumwissenschaften of the Freie Universität in Berlin, Germany (FUB), were validated against synoptic measurements. Furthermore, and on the basis of case studies, an initial comparison was performed of CM-SAF results with results derived from the Moderate Resolution Imaging Spectrometer (MODIS) and from the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP). Results show that the CFC from CM-SAF and FUB agrees well with synoptic data and MODIS data over midlatitudes but is underestimated over the tropics and overestimated toward the edges of the visible Earth disk.

* Current affiliation: Institute of Environmental Physics, University of Bremen, Bremen, Germany.

+ Current affiliation: EUMETSAT, Darmstadt, Germany.

Corresponding author address: Werner Thomas, Deutscher Wetterdienst, P.O. Box 10 04 65, D-63004 Offenbach, Germany. Email: werner.thomas@dwd.de

Abstract

The Satellite Application Facility on Climate Monitoring (CM-SAF) is aiming to retrieve satellite-derived geophysical parameters suitable for climate monitoring. CM-SAF started routine operations in early 2007 and provides a climatology of parameters describing the global energy and water cycle on a regional scale and partially on a global scale. Here, the authors focus on the performance of cloud detection methods applied to measurements of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on the first Meteosat Second Generation geostationary spacecraft. The retrieved cloud mask is the basis for calculating the cloud fractional coverage (CFC) but is also mandatory for retrieving other geophysical parameters. Therefore, the quality of the cloud detection directly influences climate monitoring of many other parameters derived from spaceborne sensors. CM-SAF products and results of an alternative cloud coverage retrieval provided by the Institut für Weltraumwissenschaften of the Freie Universität in Berlin, Germany (FUB), were validated against synoptic measurements. Furthermore, and on the basis of case studies, an initial comparison was performed of CM-SAF results with results derived from the Moderate Resolution Imaging Spectrometer (MODIS) and from the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP). Results show that the CFC from CM-SAF and FUB agrees well with synoptic data and MODIS data over midlatitudes but is underestimated over the tropics and overestimated toward the edges of the visible Earth disk.

* Current affiliation: Institute of Environmental Physics, University of Bremen, Bremen, Germany.

+ Current affiliation: EUMETSAT, Darmstadt, Germany.

Corresponding author address: Werner Thomas, Deutscher Wetterdienst, P.O. Box 10 04 65, D-63004 Offenbach, Germany. Email: werner.thomas@dwd.de

Save
  • Ackerman, S., K. Strabala, W. Menzel, R. Frey, C. Moeller, and L. Gumley, 1998: Discriminating clear sky from clouds with MODIS. J. Geophys. Res., 103 , 3214132157.

    • Search Google Scholar
    • Export Citation
  • Buriez, J., and Coauthors, 1997: Cloud detection and derivation of cloud properties from POLDER. Int. J. Remote Sens., 18 , 27852813.

  • Colton, M., T. Karl, M. Goldberg, and J. Bates, 2003: Creating climate data records from NOAA operational satellites. White paper, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, 53 pp. [Available online at http://cimss.ssec.wisc.edu/itwg/groups/climate.].

    • Search Google Scholar
    • Export Citation
  • Derrien, M., and H. LeGléau, 2005: MSG/SEVIRI cloud mask and type from SAFNWC. Int. J. Remote Sens., 26 , 47074732.

  • Derrien, M., B. Farki, L. Harang, H. L. Gléau, A. Noyalet, D. Pochic, and A. Sairouni, 1993: Automatic cloud detection applied to NOAA-11/AVHRR imagery. Remote Sens. Environ., 46 , 246267.

    • Search Google Scholar
    • Export Citation
  • Dybbroe, A., K-G. Karlsson, and A. Thoss, 2005: NWCSAF AVHRR cloud detection and analysis using dynamic thresholds and radiative transfer modeling Part I: Algorithm description. J. Appl. Meteor., 44 , 3954.

    • Search Google Scholar
    • Export Citation
  • EUMETSAT, 2006: MSG level 1.5 image data format description. EUM/MSG/ICD/105, 122 pp.

  • Hahn, C., S. Warren, and J. London, 1995: The effect of moonlight on observation of cloud cover at night, and application to cloud climatology. J. Climate, 8 , 14291446.

    • Search Google Scholar
    • Export Citation
  • Hanssen, A., and W. Kuipers, 1965: On the relationship between the frequency of rain and various meteorological parameters. KNMI Meded. en. Verhand. (Reports and Essays) 81, 2–15.

    • Search Google Scholar
    • Export Citation
  • Harries, J., and Coauthors, 2005: The geostationary Earth Radiation Budget Project. Bull. Amer. Meteor. Soc., 86 , 945960.

  • Henderson-Sellers, A., G. Seze, F. Drake, and M. Desbois, 1987: Surface-observed and satellite-retrieved cloudiness compared for the 1983 ISCCP special study area in Europe. J. Geophys. Res., 92 , (D4). 40194033.

    • Search Google Scholar
    • Export Citation
  • Jacobowitz, H., L. Stowe, G. Ohring, A. Heidinger, K. Knapp, and N. Nalli, 2003: The Advanced Very High Resolution Radiometer Pathfinder Atmosphere (PATMOS) climate dataset: A resource for climate research. Bull. Amer. Meteor. Soc., 84 , 785793.

    • Search Google Scholar
    • Export Citation
  • Karlsson, K-G., 2003: A 10 year cloud climatology over Scandinavia derived from NOAA advanced very high resolution radiometer imagery. Int. J. Climate, 23 , 10231044.

    • Search Google Scholar
    • Export Citation
  • Karlsson, K-G., H. Deneke, S. Johnston, M. Reuter, R. Roebeling, A. Tetzlaff, W. Thomas, and E. Wolters, 2007: Final validation of CM-SAF cloud products derived from MSG/SEVIRI data. Tech. Rep. SAF/CM/DWD/KNMI/SMHI/SR/CLOUDS-ORR/3, Deutscher Wetterdienst, 92 pp.

    • Search Google Scholar
    • Export Citation
  • Karlsson, K-G., U. Willén, C. Jones, and K. Wyser, 2008: Evaluation of regional cloud climate simulations over Scandinavia using a 10-year NOAA Advanced Very High Resolution Radiometer cloud climatology. J. Geophys. Res., 113 , D01203. doi:10.1029/2007JD008658.

    • Search Google Scholar
    • Export Citation
  • Kriebel, K., G. Gesell, M. Kästner, and H. Mannstein, 2003: The cloud analysis tool APOLLO: Improvements and validation. Int. J. Remote Sens., 24 , 23892408.

    • Search Google Scholar
    • Export Citation
  • Loyola, D., 2006: Applications of neural network methods to the processing of Earth observation satellite data. Neural Networks, 19 , 168177.

    • Search Google Scholar
    • Export Citation
  • Majewski, D., and Coauthors, 2002: The operational global icosahedral–hexagonal grid point model GME: Description and high-resolution tests. Mon. Wea. Rev., 130 , 319338.

    • Search Google Scholar
    • Export Citation
  • McGill, M., M. Vaughan, C. Trepte, W. Hart, D. Hlavka, D. Winker, and R. Kuehn, 2007: Airborne validation of spatial properties measured by the CALIPSO lidar. J. Geophys. Res., 112 , D20201. doi:10.1029/2007JD008768.

    • Search Google Scholar
    • Export Citation
  • Meerkötter, R., C. König, P. Bissolli, G. Gesell, and H. Mannstein, 2004: A 14-year European cloud climatology from NOAA/AVHRR data in comparison to surface observations. Geophys. Res. Lett., 31 , L15103. doi:10.1029/2004GL020098.

    • Search Google Scholar
    • Export Citation
  • Menzel, W., R. Frey, B. Baum, and H. Zhang, 2006: Cloud top properties and cloud phase—algorithm theoretical basis document. Tech. Rep. ATBD, Reference ATBD-MOD-04, Cooperative Institute for Meteorological Satellite Studies, 55 pp.

    • Search Google Scholar
    • Export Citation
  • Mohr, T., 1971: Comparison of satellite and soil observations - cloud behavior (cloud amount greater than 4/8) in European North Atlantic region, April 1, 1966, to March 31, 1967. Meteor. Rundsch., 24 , 112120.

    • Search Google Scholar
    • Export Citation
  • Ohring, G., B. Wielicki, R. Spencer, B. Emery, and R. Datla, 2005: Satellite instrument calibration for measuring global climate change. Bull. Amer. Meteor. Soc., 86 , 13031313.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. King, S. Ackerman, W. Menzel, B. Baum, J. Riédi, and R. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Remote Sens. Geosci., 41 , 459473.

    • Search Google Scholar
    • Export Citation
  • Rathke, C., and J. Fischer, 2000: Retrieval of cloud microphysical properties from thermal infrared observations by a fast iterative radiance fitting method. J. Atmos. Oceanic Technol., 17 , 15091524.

    • Search Google Scholar
    • Export Citation
  • Reuter, M., 2005: Identification of cloudy and clear sky areas in MSG SEVIRI images by analyzing spectral and temporal information. Ph.D. thesis, Freie Universität Berlin, 132 pp.

  • Rossow, W., and L. Garder, 1993: Cloud detection using satellite measurements of infrared and visible radiances for ISCCP. J. Climate, 6 , 23412369.

    • Search Google Scholar
    • Export Citation
  • Saunders, R., and K. Kriebel, 1988: An improved method for detecting clear sky and cloudy radiances from AVHRR data. Int. J. Remote Sens., 9 , 123150.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, and A. Ratier, 2002: An introduction to Meteosat Second Generation (MSG). Bull. Amer. Meteor. Soc., 83 , 977992.

    • Search Google Scholar
    • Export Citation
  • Schulz, J., and Coauthors, 2008: Operational climate monitoring from space: The EUMETSAT satellite application facility on climate monitoring (CM-SAF). Atmos. Chem. Phys. Discuss., 8 , 85178563.

    • Search Google Scholar
    • Export Citation
  • Stephens, G., and C. Kummerow, 2007: The remote sensing of clouds and precipitation from space: A review. J. Atmos. Sci., 64 , 37423765.

    • Search Google Scholar
    • Export Citation
  • Winker, D., W. Hunt, and M. McGill, 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett., 34 , L19803. doi:10.1029/2007GL030135.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 579 207 54
PDF Downloads 176 32 2