Errors in Estimating Raindrop Size Distribution Parameters Employing Disdrometer and Simulated Raindrop Spectra

Qing Cao Atmospheric Radar Research Center, and School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma

Search for other papers by Qing Cao in
Current site
Google Scholar
PubMed
Close
and
Guifu Zhang Atmospheric Radar Research Center, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Guifu Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

There have been debates and differences of opinion over the validity of using drop size distribution (DSD) models to characterize precipitation microphysics and to retrieve DSD parameters from multiparameter radar measurements. In this paper, simulated and observed rain DSDs are used to evaluate moment estimators. Seven estimators for gamma DSD parameters are evaluated in terms of the biases and fractional errors of five integral parameters: radar reflectivity (ZH), differential reflectivity (ZDR), rainfall rate (R), mean volume diameter (Dm), and total number concentration (NT). It is shown that middle-moment estimators such as M234 (using the second-third-fourth moments) produce smaller errors than lower- and higher-moment estimators if the DSD follows the gamma distribution. However, if there are model errors, the performance of M234 degrades. Even though the DSD parameters can be biased in moment estimators, integral parameters are usually not. Maximum likelihood (ML) and L-moment (LM) estimators perform similarly to low-moment estimators such as M012. They are sensitive to both model error and the measurement errors of the low ends of DSDs. The overall differences among M234, M246, and M346 are not substantial for the five evaluated parameters. This study also shows that the discrepancy between the radar and disdrometer observations cannot be reduced by using these estimators. In addition, the previously found constrained-gamma model is shown not to be exclusively determined by error effects. Rather, it is equivalent to the mean function of normalized DSDs derived through Testud’s approach, and linked to precipitation microphysics.

Corresponding author address: Qing Cao, Atmospheric Radar Research Center, University of Oklahoma, David L. Boren Blvd., Suite 4636, Norman, OK 73072. Email: qingcao@ou.edu

Abstract

There have been debates and differences of opinion over the validity of using drop size distribution (DSD) models to characterize precipitation microphysics and to retrieve DSD parameters from multiparameter radar measurements. In this paper, simulated and observed rain DSDs are used to evaluate moment estimators. Seven estimators for gamma DSD parameters are evaluated in terms of the biases and fractional errors of five integral parameters: radar reflectivity (ZH), differential reflectivity (ZDR), rainfall rate (R), mean volume diameter (Dm), and total number concentration (NT). It is shown that middle-moment estimators such as M234 (using the second-third-fourth moments) produce smaller errors than lower- and higher-moment estimators if the DSD follows the gamma distribution. However, if there are model errors, the performance of M234 degrades. Even though the DSD parameters can be biased in moment estimators, integral parameters are usually not. Maximum likelihood (ML) and L-moment (LM) estimators perform similarly to low-moment estimators such as M012. They are sensitive to both model error and the measurement errors of the low ends of DSDs. The overall differences among M234, M246, and M346 are not substantial for the five evaluated parameters. This study also shows that the discrepancy between the radar and disdrometer observations cannot be reduced by using these estimators. In addition, the previously found constrained-gamma model is shown not to be exclusively determined by error effects. Rather, it is equivalent to the mean function of normalized DSDs derived through Testud’s approach, and linked to precipitation microphysics.

Corresponding author address: Qing Cao, Atmospheric Radar Research Center, University of Oklahoma, David L. Boren Blvd., Suite 4636, Norman, OK 73072. Email: qingcao@ou.edu

Save
  • Atlas, D., and C. Ulbrich, 2006: Drop size spectra and integral remote sensing parameters in the transition from convective to stratiform rain. Geophys. Res. Lett., 33 , L16803. doi:10.1029/2006GL026824.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41 , 674685.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2004a: Drop size distribution retrieval with polarimetric radar: Model and application. J. Appl. Meteor., 43 , 461475.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2004b: Comparison of polarimetric radar drop size distribution retrieval algorithms. J. Atmos. Sci., 21 , 584598.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., G. Huang, V. Chandrasekar, and E. Gorgucci, 2002: A methodology for estimating the parameters of a gamma raindrop size distribution model from polarimetric radar data: Application to a squall-line event from the TRMM/Brazil campaign. J. Atmos. Oceanic Technol., 19 , 633645.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60 , 354365.

    • Search Google Scholar
    • Export Citation
  • Cao, Q., G. Zhang, E. Brandes, T. Schuur, A. Ryzhkov, and K. Ikeda, 2008: Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. J. Appl. Meteor., 47 , 22382255.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., and V. N. Bringi, 1987: Simulation of radar reflectivity and surface measurements of rainfall. J. Atmos. Oceanic Technol., 4 , 464478.

    • Search Google Scholar
    • Export Citation
  • Gertzman, H. S., and D. Atlas, 1977: Sampling errors in the measurement of rain and hail parameters. J. Geophys. Res., 82 , 49554966.

  • Haddad, Z. S., D. A. Short, S. L. Durden, E. Im, S. H. Hensley, M. B. Grable, and R. A. Black, 1997: A new parameterization of the rain drop size distribution. IEEE Trans. Geosci. Remote Sens., 35 , 532539.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., and A. B. Kostinski, 1998: Fluctuation properties of precipitation. Part II: Reconsideration of the meaning and measurement of raindrop size distributions. J. Atmos. Sci., 55 , 283294.

    • Search Google Scholar
    • Export Citation
  • Joss, J., and A. Waldvogel, 1967: Ein Spektrograph für Niederschlagstropfen mit automatischer Auswertung (A spectrograph for raindrop size measurement with automatic classification). Pure Appl. Geophys., 68 , 240246.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and J. A. Curry, 2008: Analytical solutions to the stochastic kinetic equation for liquid and ice particle size spectra. Part II: Large-size fraction in precipitating clouds. J. Atmos. Sci., 65 , 20442063.

    • Search Google Scholar
    • Export Citation
  • Smith, P. L., D. J. Musil, S. F. Weber, J. F. Spahn, F. N. Johnson, and W. R. Sand, 1976: Raindrop and hailstone size distributions inside hailstorms. Preprints, Int. Conf. on Cloud Physics, Boulder, CO, Amer. Meteor Soc., 252–257.

    • Search Google Scholar
    • Export Citation
  • Kozu, T., and K. Nakamura, 1991: Rain parameter estimation from dual-radar measurements combining reflectivity profile and path-integrated attenuation. J. Atmos. Oceanic Technol., 8 , 259270.

    • Search Google Scholar
    • Export Citation
  • Kruger, A., and W. F. Krajewski, 2002: Two-dimensional video disdrometer: A description. J. Atmos. Oceanic Technol., 19 , 602617.

  • Moisseev, D. N., and V. Chandrasekar, 2007: Examination of μ–Λ relation suggested for drop size distribution parameters. J. Atmos. Oceanic Technol., 24 , 847855.

    • Search Google Scholar
    • Export Citation
  • Munchak, S. J., and A. Tokay, 2008: Retrieval of raindrop size distribution from simulated dual-frequency radar measurements. J. Appl. Meteor. Climatol., 47 , 223239.

    • Search Google Scholar
    • Export Citation
  • Nešpor, V., W. F. Krajewski, and A. Kruger, 2000: Wind-induced error of raindrop size distribution measurement using a two-dimensional video disdrometer. J. Atmos. Oceanic Technol., 17 , 14831492.

    • Search Google Scholar
    • Export Citation
  • Ray, P. S., 1972: Broadband complex refractive indices of ice and water. Appl. Opt., 11 , 18361844.

  • Ryzhkov, V. A., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrande, and D. S. Zrnić, 2005: The joint polarization experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86 , 809824.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., 2005: On the shape-slope relation of drop size distributions in convective rain. J. Appl. Meteor., 44 , 11461151.

  • Smith, J. A., 1993: Marked point process model distributions. J. Appl. Meteor., 32 , 284296.

  • Smith, P. L., 2003: Raindrop size distributions: Exponential or gamma—Does the difference matter? J. Appl. Meteor., 42 , 10311034.

  • SmithMusil, D. J., S. F. Weber, J. F. Spahn, F. N. Johnson, and W. R. Sand, 1976: Raindrop and hailstone size distributions inside hailstorms. Preprints, Int. Conf. on Cloud Physics, Boulder, CO, Amer. Meteor Soc., 252–257.

    • Search Google Scholar
    • Export Citation
  • Smith, P. L., Z. Liu, and J. Joss, 1993: A study of sampling-variability effects in raindrop size observations. J. Appl. Meteor., 32 , 12591269.

    • Search Google Scholar
    • Export Citation
  • Smith, P. L., D. V. Kliche, and R. W. Johnson, 2005: The bias in moment estimators for parameters of drop-size distribution functions: Sampling from gamma distributions. Preprints,32nd Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., 15R. 5. [Available online at http://ams.confex.com/ams/pdfpapers/97018.pdf.].

    • Search Google Scholar
    • Export Citation
  • Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. Dou, 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and remote sensing. J. Appl. Meteor., 40 , 11181140.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35 , 355371.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., A. Kruger, and W. F. Krajewski, 2001: Comparison of drop size distribution measurements by impact and optical disdrometers. J. Appl. Meteor., 40 , 20832097.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22 , 17641775.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., and D. Atlas, 1998: Rainfall microphysics and radar properties: Analysis methods for drop size spectra. J. Appl. Meteor., 37 , 912923.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., G. Zhang, and E. Brandes, 2004: Polarimetric radar rain estimators based on constrained gamma drop size distribution model. J. Appl. Meteor., 43 , 217230.

    • Search Google Scholar
    • Export Citation
  • Waldvogel, A., 1974: The N0 jump of raindrop spectra. J. Atmos. Sci., 31 , 10671078.

  • Wong, R. K. W., and N. Chidambaram, 1985: Gamma size distribution and stochastic sampling errors. J. Climate Appl. Meteor., 24 , 568579.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., J. Vivekanandan, and E. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39 , 830841.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., J. Vivekanandan, E. Brandes, R. Meneghini, and T. Kozu, 2003: The shape-slope relation in Gamma raindrop size distribution: Statistical error or useful information? J. Atmos. Oceanic Technol., 20 , 11061119.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., J. Sun, and E. Brandes, 2006: Improving parameterization of rain microphysics with disdrometer and radar observations. J. Atmos. Sci., 63 , 12731290.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., M. Xue, Q. Cao, and D. Dawson, 2008: Diagnosing the intercept parameter for exponential raindrop size distribution based on video disdrometer observations: Model development. J. Appl. Meteor. Climatol., 47 , 29832992.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., 1975: Simulation of weatherlike Doppler spectra and signals. J. Appl. Meteor., 14 , 619629.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1065 406 85
PDF Downloads 539 132 8