Abstract
Heavy rainfall and the associated floods occur frequently in the Hawaiian Islands and have caused huge economic losses as well as social problems. Extreme rainfall events in this study are defined by three different methods based on 1) the mean annual number of days on which 24-h accumulation exceeds a given daily rainfall amount, 2) the value associated with a specific daily rainfall percentile, and 3) the annual maximum daily rainfall values associated with a specific return period. For estimating the statistics of return periods, the three-parameter generalized extreme value distribution is fit using the method of L-moments. Spatial patterns of heavy and very heavy rainfall events across the islands are mapped separately based on the aforementioned three methods. Among all islands, the pattern on the island of Hawaii is most distinguishable, with a high frequency of events along the eastern slopes of Mauna Kea and a low frequency of events on the western portion so that a sharp gradient in extreme events from east to west is prominent. On other islands, extreme rainfall events tend to occur locally, mainly on the windward slopes. A case is presented for estimating return periods given different rainfall intensity for a station in Upper Manoa, Oahu. For the Halloween flood in 2004, the estimated return period is approximately 27 yr, and its true value should be no less than 13 yr with 95% confidence as determined from the adjusted bootstrap resampling technique.
Corresponding author address: Dr. Pao-Shin Chu, Department of Meteorology, 2525 Correa Rd., University of Hawaii at Manoa, Honolulu, HI 96822–2219. Email: chu@hawaii.edu