Distribution of Tropospheric Water Vapor in Clear and Cloudy Conditions from Microwave Radiometric Profiling

Alia Iassamen Laboratoire d’Aérologie, Observatoire Midi-Pyrénées, Université Paul Sabatier, Toulouse, France, and LAMPA, Département d’Electronique, Université Mouloud Mammeri, Tizi Ouzou, Algeria

Search for other papers by Alia Iassamen in
Current site
Google Scholar
PubMed
Close
,
Henri Sauvageot Laboratoire d’Aérologie, Observatoire Midi-Pyrénées, Université Paul Sabatier, Toulouse, France

Search for other papers by Henri Sauvageot in
Current site
Google Scholar
PubMed
Close
,
Nicolas Jeannin Département Electromagnétisme et Radar, Office National d’Etudes et de Recherches Aérospatiales, Toulouse, France

Search for other papers by Nicolas Jeannin in
Current site
Google Scholar
PubMed
Close
, and
Soltane Ameur LAMPA, Département d’Electronique, Université Mouloud Mammeri, Tizi Ouzou, Algeria

Search for other papers by Soltane Ameur in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A dataset gathered over 369 days in various midlatitude sites with a 12-frequency microwave radiometric profiler is used to analyze the statistical distribution of tropospheric water vapor content (WVC) in clear and cloudy conditions. The WVC distribution inside intervals of temperature is analyzed. WVC is found to be well fitted by a Weibull distribution. The two Weibull parameters, the scale (λ) and shape (k), are temperature (T) dependent; k is almost constant, around 2.6, for clear conditions. For cloudy conditions, at T < −10°C, k is close to 2.6. For T > −10°C, k displays a maximum in such a way that skewness, which is positive in most conditions, reverses to negative in a temperature region approximately centered around 0°C (i.e., at a level where the occurrence of cumulus clouds is high). Analytical λ(T) and k(T) relations are proposed. The WVC spatial distribution can thus be described as a function of T. The mean WVC vertical profiles for clear and cloudy conditions are well described by a function of temperature of the same form as the Clausius–Clapeyron equation. The WVCcloudy/WVCclear ratio is shown to be a linear function of temperature. The vertically integrated WV (IWV) is found to follow a Weibull distribution. The IWV Weibull distribution parameters retrieved from the microwave radiometric profiler agree very well with the ones calculated from the 15-yr ECMWF reanalysis (ERA-15) meteorological database. The radiometric retrievals compare fairly well to the corresponding values calculated from an operational radiosonde sounding dataset.

Corresponding author address: Dr. Henri Sauvageot, Laboratoire d’Aérologie, Université Paul Sabatier, Campistrous 65300 Lannemezan, France. Email: sauh@aero.obs-mip.fr

Abstract

A dataset gathered over 369 days in various midlatitude sites with a 12-frequency microwave radiometric profiler is used to analyze the statistical distribution of tropospheric water vapor content (WVC) in clear and cloudy conditions. The WVC distribution inside intervals of temperature is analyzed. WVC is found to be well fitted by a Weibull distribution. The two Weibull parameters, the scale (λ) and shape (k), are temperature (T) dependent; k is almost constant, around 2.6, for clear conditions. For cloudy conditions, at T < −10°C, k is close to 2.6. For T > −10°C, k displays a maximum in such a way that skewness, which is positive in most conditions, reverses to negative in a temperature region approximately centered around 0°C (i.e., at a level where the occurrence of cumulus clouds is high). Analytical λ(T) and k(T) relations are proposed. The WVC spatial distribution can thus be described as a function of T. The mean WVC vertical profiles for clear and cloudy conditions are well described by a function of temperature of the same form as the Clausius–Clapeyron equation. The WVCcloudy/WVCclear ratio is shown to be a linear function of temperature. The vertically integrated WV (IWV) is found to follow a Weibull distribution. The IWV Weibull distribution parameters retrieved from the microwave radiometric profiler agree very well with the ones calculated from the 15-yr ECMWF reanalysis (ERA-15) meteorological database. The radiometric retrievals compare fairly well to the corresponding values calculated from an operational radiosonde sounding dataset.

Corresponding author address: Dr. Henri Sauvageot, Laboratoire d’Aérologie, Université Paul Sabatier, Campistrous 65300 Lannemezan, France. Email: sauh@aero.obs-mip.fr

Save
  • Aitchison, J., and J. A. Brown, 1966: The Lognormal Distribution. Cambridge University Press, 176 pp.

  • Atlas, D., D. Rosenfeld, and D. A. Short, 1990: The estimation of convective rainfall by area integrals: 1. The theoretical and empirical basis. J. Geophys. Res., 95 , (D3). 21532160.

    • Search Google Scholar
    • Export Citation
  • Bianco, L., D. Cimini, F. S. Marzano, and R. Ware, 2005: Combining microwave radiometer and wind profiler radar measurements for high-resolution atmospheric humidity profiling. J. Atmos. Oceanic Technol., 22 , 949965.

    • Search Google Scholar
    • Export Citation
  • Brooks, D. R., F. M. Mims III, and R. Roettger, 2007: Inexpensive near-IR sun photometer for measuring total column water vapor. J. Atmos. Oceanic Technol., 24 , 12681276.

    • Search Google Scholar
    • Export Citation
  • Buck, A. L., 1981: New equations for computing vapor pressure and enhancement factor. J. Appl. Meteor., 20 , 15271532.

  • Chahine, M. T., 1992: The hydrological cycle and its influence on climate. Nature, 359 , 373380.

  • Crow, E. L., and K. Shimizu, 1988: Lognormal Distributions. CRC Press, 387 pp.

  • Ferrare, R. A., and Coauthors, 2004: Characterization of upper-troposphere water vapor measurements during AFWEX using LASE. J. Atmos. Oceanic Technol., 21 , 17901808.

    • Search Google Scholar
    • Export Citation
  • Foster, J., M. Bevis, and W. Raymond, 2006: Precipitable water and the lognormal distribution. J. Geophys. Res., 111 , D15102. doi:10.1029/2005JD006731.

    • Search Google Scholar
    • Export Citation
  • Furumoto, J-I., K. Kurimoto, and T. Tsuda, 2003: Continuous observations of humidity profiles with the MU radar–RASS combined with GPS or radiosonde measurements. J. Atmos. Oceanic Technol., 20 , 2341.

    • Search Google Scholar
    • Export Citation
  • Furumoto, J-I., S. Imura, T. Tsuda, H. Seko, T. Tsuyuki, and K. Saito, 2007: The variational assimilation method for the retrieval of humidity profiles with the wind-profiling radar. J. Atmos. Oceanic Technol., 24 , 15251545.

    • Search Google Scholar
    • Export Citation
  • Gaffen, D. J., and W. P. Elliott, 1993: Column water vapor content in clear and cloudy skies. J. Climate, 6 , 22782287.

  • Güldner, J., and D. Spänkuch, 2001: Remote sensing of the thermodynamic state of the atmospheric boundary layer by ground-based microwave radiometry. J. Atmos. Oceanic Technol., 18 , 925933.

    • Search Google Scholar
    • Export Citation
  • Gultepe, I., and G. A. Isaac, 1997: Liquid water content and temperature relationship from aircraft observations and its applicability to GCMs. J. Climate, 10 , 446452.

    • Search Google Scholar
    • Export Citation
  • Han, Y., and E. Westwater, 2000: Analysis and improvement of tipping calibration for ground-based microwave radiometers. IEEE Trans. Geosci. Remote Sens., 38 , 12601276.

    • Search Google Scholar
    • Export Citation
  • Hogg, D. C., F. O. Guiraud, J. B. Snider, M. T. Decker, and E. R. Westwater, 1983: A steerable dual-channel microwave radiometer for measurement of water vapor and liquid in the troposphere. J. Climate Appl. Meteor., 22 , 789806.

    • Search Google Scholar
    • Export Citation
  • Jeannin, N., L. Féral, H. Sauvageot, and L. Castanet, 2008: Statistical distribution of integrated liquid water and water vapor content from meteorological reanalysis. IEEE Trans. Antennas Propag., 56 , 33503355.

    • Search Google Scholar
    • Export Citation
  • Kidder, S. Q., and A. S. Jones, 2007: A blended satellite total precipitable water product for operational forecasting. J. Atmos. Oceanic Technol., 24 , 7481.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., and G. A. Isaac, 2006: Relative humidity in liquid, mixed-phase, and ice clouds. J. Atmos. Sci., 63 , 28652880.

  • Liljegren, J. C., B. M. Lesht, S. Kato, and E. E. Clothiaux, 2001: Initial evaluation of profiles of temperature, water vapor and cloud liquid water from a new microwave profiling radiometer. Preprints, 11th Symp. on Meteorological Observations and Instrumentation, Albuquerque, NM, Amer. Meteor. Soc., 8.6.

    • Search Google Scholar
    • Export Citation
  • Liljegren, J. C., S. A. Boukabara, K. Cady-Pereira, and S. A. Clough, 2004: The effect of the half-width of the 22-GHz water vapor line on retrievals of temperature and water vapor profiles with a twelve-channel microwave radiometer. IEEE Trans. Geosci. Remote Sens., 10 , 17.

    • Search Google Scholar
    • Export Citation
  • Liou, Y. A., Y. T. Teng, T. Van Hove, and J. C. Liljegren, 2001: Comparison of precipitable water observations in the near tropics by GPS, microwave radiometer, and radiosondes. J. Appl. Meteor., 40 , 515.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., W. Tang, and P. P. Nüler, 1991: Humidity profiles over the ocean. J. Climate, 4 , 10231034.

  • Martyn, D., 1992: Climates of the World. Developments in Atmospheric Sciences, Vol. 18, Elsevier, 435 pp.

  • Mazin, I. P., 1995: Cloud water content in continental clouds of middle latitudes. Atmos. Res., 35 , 283297.

  • Mesnard, F., and H. Sauvageot, 2003: Structural characteristics of rain fields. J. Geophys. Res., 108 , 4385. doi:10.1029/2002JD002808.

  • Miloshevich, L. M., H. Vömel, D. N. Whiteman, B. M. Lesht, F. J. Schmidlin, and F. Russo, 2006: Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G, and implications for AIRS validation. J. Geophys. Res., 111 , D09S10. doi:10.1029/2005JD006083.

    • Search Google Scholar
    • Export Citation
  • Murphy, D. M., and T. Koop, 2005: Review of the vapour pressures of ice and supercooled water for atmospheric applications. Quart. J. Roy. Meteor. Soc., 131 , 15391565.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., A. H. Oort, and E. N. Lorenz, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, 954 pp.

  • Rocken, C., T. Van Hore, and R. Ware, 1997: Near real-time GPS sensing of atmospheric water vapor. Geophys. Res. Lett., 24 , 32213224.

    • Search Google Scholar
    • Export Citation
  • Sakai, T., T. Nagai, M. Nakazato, T. Matsumura, N. Orikasa, and Y. Shoji, 2007: Comparison of Raman lidar measurements of tropospheric water vapor profiles with radiosondes, hygrometers on the meteorological observation tower, and GPS at Tsukuba, Japan. J. Atmos. Oceanic Technol., 24 , 14071423.

    • Search Google Scholar
    • Export Citation
  • Sauvageot, H., 1994: The probability density function of rain rate and the estimation of rainfall by area integrals. J. Appl. Meteor., 33 , 12551262.

    • Search Google Scholar
    • Export Citation
  • Schroeder, J. A., and E. R. Westwater, 1991: User’s guide to WPL microwave radiative transfer software. NOAA Tech. Memo. ERL WPL-213, 37 pp.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., E. R. Kursinski, and W. G. Read, 2006: A distribution law for free-tropospheric relative humidity. J. Climate, 19 , 62676277.

    • Search Google Scholar
    • Export Citation
  • Snider, J. B., 2000: Long-term observations of cloud liquid, water vapor, and cloud-base temperature in the North Atlantic Ocean. J. Atmos. Oceanic Technol., 17 , 928939.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and F. P. Bretherton, 1993: Upper tropospheric relative humidity from the GOES 6.7 μm channel: Method and climatology for July 1987. J. Geophys. Res., 98 , (D9). 1666916688.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate, 19 , 33543360.

    • Search Google Scholar
    • Export Citation
  • Solheim, F., and J. Godwin, 1998: Passive ground-based remote sensing of atmospheric temperature, water vapor, and cloud liquid profiles by a frequency synthesized microwave radiometer. Meteor. Z., 7 , 370376.

    • Search Google Scholar
    • Export Citation
  • Solheim, F., J. Godwin, E. Westwater, Y. Han, S. Keihm, K. Marsh, and R. Ware, 1998: Radiometric profiling of temperature, water vapor, and liquid water using various inversion methods. Radio Sci., 33 , 393404.

    • Search Google Scholar
    • Export Citation
  • Spichtinger, P., K. Gierens, H. G. J. Smit, J. Ovarlez, and J. F. Gayet, 2004: On the distribution of relative humidity in cirrus clouds. Atmos. Chem. Phys., 4 , 639647.

    • Search Google Scholar
    • Export Citation
  • Stone, E. M., L. Pan, B. J. Sandor, W. G. Read, and J. W. Waters, 2000: Spatial distributions of upper tropospheric water vapor measurements from UARS microwave limb sounder. J. Geophys. Res., 105 , 1214912161.

    • Search Google Scholar
    • Export Citation
  • Van Baelen, J., J. P. Aubagnac, and A. Dabas, 2005: Comparison of near-real time estimates of integrated water vapor derived with GPS, radiosondes, and microwave radiometer. J. Atmos. Oceanic Technol., 22 , 201210.

    • Search Google Scholar
    • Export Citation
  • van Meijgaard, E., and S. Crewell, 2005: Comparison of model predicted liquid water path with ground-based measurements during CLIWA-NET. Atmos. Res., 75 , 201226.

    • Search Google Scholar
    • Export Citation
  • Ware, R., R. Carpenter, J. Güldner, J. Liljegren, T. Nehrkorn, F. Solheim, and F. Vandenberghe, 2003: A multichannel radiometric profiler of temperature, humidity and cloud liquid. Radio Sci., 38 , 8079. doi:10.1029/2002RS002856.

    • Search Google Scholar
    • Export Citation
  • Watson, R. T., and Coauthors, 2001: Climate Change 2001: Synthesis Report. Cambridge University Press, 700 pp.

  • Webster, P. J., 1994: The role of hydrological processes in ocean-atmosphere interactions. Rev. Geophys., 32 (4) 427476.

  • Westwater, E. R., Y. Han, M. D. Shupe, and S. Y. Matrosov, 2001: Analysis of integrated cloud liquid and precipitable water vapor retrievals from microwave radiometers during the Surface Heat Budget of the Arctic Ocean project. J. Geophys. Res., 106 , 3201932030.

    • Search Google Scholar
    • Export Citation
  • Westwater, E. R., S. Crewell, and C. Mätzler, 2004: A review of surface-based microwave and millimeter-wave radiometric remote sensing of the troposphere. Radio Sci. Bull., 310 , 5980.

    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., I. Veselovskii, M. Cadirola, K. Rush, J. Comer, J. R. Potter, and R. Tola, 2007: Demonstration measurements of water vapor, cirrus clouds, and carbon dioxide using a high-performance Raman lidar. J. Atmos. Oceanic Technol., 24 , 13771388.

    • Search Google Scholar
    • Export Citation
  • Yang, H., and R. T. Pierrehumbert, 1994: Production of dry air by isentropic mixing. J. Atmos. Sci., 51 , 34373454.

  • Zhang, C., B. Mapes, and B. J. Soden, 2003: Bimodality in tropical water vapour. Quart. J. Roy. Meteor. Soc., 129 , 28472866.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2425 989 171
PDF Downloads 441 141 24