Abstract
A novel approach to infer surface soil heat fluxes from measured profiles of soil temperature, soil heat flux, and observations of the vegetation canopy temperature and the incoming shortwave radiation is evaluated for the Cabauw measurement facility in the Netherlands. The approach is a variational data assimilation approach that uses the applied measurements to optimize, on a daily basis, parameter values of a model that describes the heat transport between the vegetation canopy and the surface and within the soil column. Insertion of error characteristics that either are inferred from the field data themselves or are derived from literature leads to valid estimates of the cost function for about 100 days in 2003. The approach gives values of the model parameters that compare well to values derived from the literature, although values for the soil conductivity and the volumetric heat capacity of the soil start to differ from the literature values at the end of 2003, possibly because of specific soil characteristics and the extreme dryness of the summer of 2003. The model gives estimates of the surface soil heat flux that compare well to estimates using the currently operational lambda approach, provided that the latter is adapted to account for the disturbance of the soil heat flux at the locations of the heat flux plates. Only when the surface soil heat flux is very small or very large does the new approach give estimates of the surface soil heat flux that differ from those obtained with the lambda approach.
Corresponding author address: Fred C. Bosveld, Koninklijk Nederlands Meteorologisch Instituut, Wilhelminalaan 10, NL-3732 GK De Bilt, Netherlands. Email: bosveld@knmi.nl